Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



ENERGY TECH
World's smallest electrical wire made from world's smallest diamonds
by Brooks Hays
Palo Alto, Calif. (UPI) Dec 27, 2016


disclaimer: image is for illustration purposes only

Scientists at Stanford and the SLAC National Accelerator Laboratory have created the world's smallest electrical wire by using the self-organizational abilities diamondoids, the smallest bits of diamonds. The wires measure just three atoms wide.

The new assembly strategy offers impressive precision and control and requires no hands-on intervention.

"What we have shown here is that we can make tiny, conductive wires of the smallest possible size that essentially assemble themselves," Hao Yan, a Stanford postdoctoral researcher, said in a news release. "The process is a simple, one-pot synthesis. You dump the ingredients together and you can get results in half an hour. It's almost as if the diamondoids know where they want to go."

Diamondoids serve as both assembly toolset and insulator, surrounding the semiconductor core made of chalcogenide, a unique copper and sulfur combination.

Diamondoids are extracted from petroleum fluids and sorted by size. Scientists selected diamondoids made up of 10 carbon atoms and attached a sulfur atom to each. The diamond bits were then placed in a solution where each sulfur atom were able to bond with a single copper ion.

Once bonded, the diamondoids were drawn to each other by a force known as van der Waals attraction. The bit naturally fit together in a way that creates a tiny wire of sulfur and copper ions.

"Much like LEGO blocks, they only fit together in certain ways that are determined by their size and shape," explained Stanford grad student Fei Hua Li. "The copper and sulfur atoms of each building block wound up in the middle, forming the conductive core of the wire, and the bulkier diamondoids wound up on the outside, forming the insulating shell."

The scientists used their diamondoid assembly technique to build one-dimensional wires composed of cadmium, zinc, iron and silver. The wires could be used to improve optoelectronics, light-emitting diodes, solar cells and other technologies.

"You can imagine weaving those into fabrics to generate energy," said Stanford professor Nicholas Melosh. "This method gives us a versatile toolkit where we can tinker with a number of ingredients and experimental conditions to create new materials with finely tuned electronic properties and interesting physics."

Researchers described their new nanowire assemblage technique in the journal Nature Materials.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Bright future for energy devices
Houghton MI (SPX) Dec 29, 2016
A little sodium goes a long way. At least that's the case in carbon-based energy technology. Specifically, embedding sodium in carbon materials can tremendously improve electrodes. A research team led by Yun Hang Hu, the Charles and Carroll McArthur Professor of materials science and engineering at Michigan Tech, created a brand-new way to synthesize sodium-embedded carbon nanowalls. Previ ... read more


ENERGY TECH
Tech show looks beyond 'smart,' to new 'realities'

'Passengers' and the real-life science of deep space travel

NASA Readies for Major Orion Milestones in 2017

India achieves advances multiple space systems in 2016

ENERGY TECH
Preparing to Plug Into NASA SLS Fuel Tank

New round of wind tunnel tests underway for bigger SLS version

United Launch Alliance launches EchoStar XIX satellite

Ultra-Cold Storage - Liquid Hydrogen may be Fuel of the Future

ENERGY TECH
Small Troughs Growing on Mars May Become 'Spiders'

All eyes on Trump over Mars

Opportunity performs several drives to ancient gully

Full go-ahead for building ExoMars 2020

ENERGY TECH
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

ENERGY TECH
Airbus DS and Energia eye new medium-class satellite platform

OneWeb announces key funding form SoftBank Group and other investors

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

ENERGY TECH
Scientists create tiny laser using silver nanoparticles

Divide and conquer pattern searching

Scientists hope to make concrete tougher by studying its defects

The hidden inferno inside your laser pointer

ENERGY TECH
The blob can learn and teach

Searching a sea of 'noise' to find exoplanets - using only data as a guide

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Exciting new creatures discovered on ocean floor

ENERGY TECH
Exploring Pluto and the Wild Back Yonder

Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement