. 24/7 Space News .
TIME AND SPACE
Watching a quantum material lose its stripes
by Staff Writers
Berkeley CA (SPX) Nov 30, 2017


This is an illustration of an ultrashort laser light striking a lanthanum strontium nickel oxide crystal, triggering the melting of atomic-scale stripes. The charges (yellow) quickly become mobile while the crystal distortions react only with delay, exposing the underlying interactions.

Stripes can be found everywhere, from zebras roaming in the wild to the latest fashion statement. In the world of microscopic physics, periodic stripe patterns can be formed by electrons within so-called quantum materials.

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have now disentangled the intriguing dynamics of how such atomic-scale stripes melt and form, providing fundamental insights that could be useful in the development of novel energy materials.

In strongly correlated quantum materials, interactions between the electrons reign supreme. The complex coupling of these electrons with each other - and with electron spins and crystal vibrations - results in exotic phases such as charge ordering or high-temperature superconductivity.

"A key goal of condensed matter physics is to understand the forces responsible for complex phases and the transitions between them," said Robert Kaindl, a principal investigator and staff scientist at Berkeley Lab's Materials Sciences Division. "But in the microscopic world, interactions are often extremely fast. If we just slowly heat or cool a material to change its phase, we can miss out on the underlying action."

Kaindl and his colleagues have been using ultrafast laser pulses to tease apart the microscopic dynamics of correlated quantum materials to access the interactions among the electrons and with the crystal's atomic lattice in the time domain.

For this study, the researchers worked with lanthanum nickelate, a quantum material and model stripe compound. In particular, the researchers investigated the electronic charges that form the stripe pattern and how they couple to the crystal lattice.

How charges interact with the crystal is a key ingredient to stripe physics, the researchers said.

"The crystal lattice strongly distorts around the charge stripes," said Giacomo Coslovich, who did the work while he was a postdoctoral researcher at Berkeley Lab. "This change of the crystal symmetry results in new lattice vibrations, which we can in turn detect with light at terahertz frequencies."

Kaindl and Coslovich are corresponding authors of a paper reporting these results in Science Advances.

In their experiments, the material is optically excited by a near-infrared laser pulse with a duration of 50 femtoseconds, and probed with a terahertz pulse with variable time delay. A femtosecond is one millionth of one billionth of a second.

The researchers found unexpected dynamics when using the laser to disrupt the microscopic order.

"The interesting thing is that while the laser immediately excited the electrons, the vibrational distortions in the crystal initially remained frozen," said Coslovich, who is now associate staff scientist at SLAC National Accelerator Laboratory. "The stripe-phase vibrations disappeared only after several hundred to a few thousand femtoseconds. We also concluded that the speed depends on the direction of the interactions."

The interpretation of the experiments was supported by simulations of the phonon dispersion by Alexander Kemper of North Carolina State University.

The results provide important insight into the interactions, or "glue," that couple electrons to lattice vibrations in the lanthanum nickelate. However, their broader relevance stems from recent observations of charge order in high-temperature superconductors - materials where electrical currents can flow without resistance at temperatures above the boiling point of liquid nitrogen. While the mechanism remains puzzling, recent studies demonstrated the ability to induce superconductivity by suppressing stripes with short light pulses.

"Fluctuating stripes are thought to occur in unconventional superconductors. Our study puts a speed limit on how fast such patterns can change," said Kaindl. "It highlights the importance of considering both the spatial and temporal structure of the glue."

Research paper

TIME AND SPACE
Highly charged molecules behave paradoxically
Lund, Sweden (SPX) Nov 30, 2017
A number of chemistry researchers from several institutions including Lund University in Sweden, have managed to identify a new mechanism that makes certain charged biomolecules attach to each other. The biomolecules in the present study serve as models for antibacterial peptides, that is, protein-like molecules that fulfil important functions in the body. "Antibacterial peptides are impor ... read more

Related Links
Lawrence Berkeley National Laboratory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Building for a future in space: An interview with Dava Newman and Gui Trotti

Space Farms: 'Mark Watney in The Martian Was Right to Add Poop to the Soil'

New motion sensors major step towards cheaper wearable technology

Does the Outer Space Treaty at 50 need a rethink

TIME AND SPACE
ISRO eyes one rocket launch a month in 2018

Russia to build launch pad for super heavy-lift carrier by 2028

Mechanisms are critical to all space vehicles

Russia loses contact with satellite after launch from new spaceport

TIME AND SPACE
Earthworms can reproduce in Mars-like soil

Opportunity Greets Winter Solstice

NASA builds its next Mars rover mission

Scientists developed a new sensor for future missions to the Moon and Mars

TIME AND SPACE
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

TIME AND SPACE
Going green to the Red Planet

Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

Need to double number of operational satellites: ISRO chief

TIME AND SPACE
Quantum optics allows us to abandon expensive lasers in spectroscopy

Spin current from heat: New material increases efficiency

New catalyst controls activation of a carbon-hydrogen bond

Math gets real in strong, lightweight structures

TIME AND SPACE
Scientists identify key factors that help microbes thrive in harsh environments

Exoplanet Has Smothering Stratosphere Without Water

Scientists study Earth's earliest life forms in Nevada hot spring

Traces of life on nearest exoplanets may be hidden in equatorial trap

TIME AND SPACE
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.