. 24/7 Space News .
ICE WORLD
Warm ocean water attacking edges of Antarctica's ice shelves
by Staff Writers
Boulder CO (SPX) Oct 10, 2019

Satellite images show polynyas (open-water regions) forming at the ends of basal channels beneath shear margins of the East Getz Ice Shelf. A new study in Science Advances illuminates how warm ocean water and ice dynamics conspire to weaken the edges of Antarctica's ice shelves, making them more vulnerable to breakup.

Upside-down "rivers" of warm ocean water are eroding the fractured edges of thick, floating Antarctic ice shelves from below, helping to create conditions that lead to ice-shelf breakup and sea-level rise, according to a new study.

The findings, published in Science Advances, describe a new process important to the future of Antarctica's ice and the continent's contribution to rising seas. Models and forecasts do not yet account for the newly understood and troubling scenario, which is already underway.

"Warm water circulation is attacking the undersides of these ice shelves at their most vulnerable points," said Alley, who earned her Ph.D. at the University of Colorado Boulder, in the National Snow and Ice Data Center, part of CIRES. Alley is now a visiting assistant professor of Earth Sciences at The College of Wooster in Ohio. "These effects matter," she said. "But exactly how much, we don't yet know. We need to."

Ice shelves float out on the ocean at the edges of land-based ice sheets, and about three-quarters of the Antarctic continent is surrounded by these extensions of the ice sheet. The shelves can be hemmed in by canyon-like walls and bumps in the ocean floor. When restrained by these bedrock obstructions, ice shelves slow down the flow of ice from the interior of the continent toward the ocean. But if an ice shelf retreats or falls apart, ice on land flows much more quickly into the ocean, increasing rates of sea-level rise.

The scientists' new work focuses on two factors conspiring to weaken ice shelves. First, flowing ice often stretches and cracks along its edges or "shear margins," especially when it's flowing quickly, Alley said. "In MODIS and other satellite images, you see all these crevasses."

As those craggy features flow toward the ocean and become part of floating ice shelves, they're vulnerable to erosion from below, by warm plumes of ocean water, the team reported.

Warm and fresh water is more buoyant than cold and salty water, so it has a tendency to "find" high spots in floating ice, sometimes forming a type of "upside-down river" that can grow miles wide and tens of miles long. Alley and her colleagues first mapped those rivers or "basal channels" a few years ago, spotting them as wrinkles or sags in otherwise smooth ice surfaces.

Now, they've put it all together, showing that large basal channels are more likely to form at the shear margins--the weakest parts--of fast-flowing ice shelves. While the ice is still on land, large troughs form in the shear margins, becoming thin spots when the ice flows onto the ocean. Warm ocean water finds those thin spots along the base of the ice shelf, further eroding and weakening margins, making ice shelves more vulnerable to retreat and collapse.

In the past, researchers didn't know that warm plumes were so common beneath ice-shelf margins. Alley's team used satellite imagery to show that, at the ends of shear margins on many of Antarctica's fastest-changing glaciers, warm water rises to the surface, melting sea ice and forming areas of open water called "polynyas." The study found these polynyas forming year after year in the same spots, which means that warm water is indeed channelizing beneath thin, weak ice-shelf shear margins.

These processes appear to happen on ice shelves in both Antarctica and Greenland, Alley said, though the new work focuses on Antarctic glaciers.

The research team published earlier work focused on the damaging effects of meltwater on the surface of the ice shelves. "Now we're seeing a new process, where warm water cuts into the shelf from below," said co-author Ted Scambos, a CIRES senior scientist at CU Boulder. "Like scoring a plate of glass, the trough renders the shelf weak, and in a few decades, it's gone, freeing the ice sheet to ride out faster into the ocean."

Scambos and Alley are heading back to Antarctica this fall, to continue work on the continent's ice dynamics; Scambos is a lead scientist in the International Thwaites Glacier Collaborative.


Related Links
University of Colorado at Boulder
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Study calls for stronger protections for emperor penguins
Washington (UPI) Oct 9, 2019
In the coming decades, Antarctica's most iconic resident, the emperor penguin, will face a variety of growing threats. To curb the species' decline and prevent its disappearance, a new study is calling for special protections and bolder conservation efforts. Climate models suggest shifting wind patterns and rising temperatures are likely to reduce the amount of sea ice available to emperor penguins for breeding. To predict the effects of climate change on the species, scientists analyzed ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Astronauts grow 'space meat' but admit taste 'needs to be improved'

For scientists, failure can pay dividends down the road

The first humans in space

NASA astronaut Nick Hague, crewmates return safely from ISS

ICE WORLD
Space Launch System mock up arrives at Kennedy for testing

Artemis Generation takes on NASA Student Launch: 64 teams to compete

SpaceX Falcon 9 rocket to blast off in 2021 with private lunar lander

Italy signs first ever agreement with Virgin to launch suborbital research missions

ICE WORLD
Global analysis of submarine canyons may shed light on Martian landscapes

InSight 'hears' peculiar sounds on Mars

A fresh attempt for the first 'Mole' on Mars

Far out: Bosnian village tickled to share name with Mars crater

ICE WORLD
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

ICE WORLD
Talking space with the next generation in Europe

Playmobil go above and beyond with ESA's Luca Parmitano

NewSpace will eliminate sun-synchronous orbits

Australian Government commits to join NASA in Lunar exploration and beyond

ICE WORLD
Electronic solid could reduce carbon emissions in fridges and air conditioners

German chemical industry sketches costly carbon-neutral path

Astroscale and Southampton jointly advance business case for active debris removal services

ESA selects AdaCore's qualified multitasking solution for spacecraft software development

ICE WORLD
Were hot, humid summers the key to life's origins?

A planet that should not exist

Many gas giant exoplanets waiting to be discovered

Giant exoplanet around tiny star challenges understanding of how planets form

ICE WORLD
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.