. 24/7 Space News .
STELLAR CHEMISTRY
Virtual 'universe machine' sheds light on galaxy evolution
by Staff Writers
Tucson AZ (SPX) Aug 12, 2019

illustration only

How do galaxies such as our Milky Way come into existence? How do they grow and change over time? The science behind galaxy formation has remained a puzzle for decades, but a University of Arizona-led team of scientists is one step closer to finding answers thanks to supercomputer simulations.

Observing real galaxies in space can only provide snapshots in time, so researchers who want to study how galaxies evolve over billions of years have to revert to computer simulations. Traditionally, astronomers have used this approach to invent and test new theories of galaxy formation, one-by-one. Peter Behroozi, an assistant professor at the UA Steward Observatory, and his team overcame this hurdle by generating millions of different universes on a supercomputer, each of which obeyed different physical theories for how galaxies should form.

The findings, published in the Monthly Notices of the Royal Astronomical Society, challenge fundamental ideas about the role dark matter plays in galaxy formation, how galaxies evolve over time and how they give birth to stars.

"On the computer, we can create many different universes and compare them to the actual one, and that lets us infer which rules lead to the one we see," said Behroozi, the study's lead author.

The study is the first to create self-consistent universes that are such exact replicas of the real one: computer simulations that each represent a sizeable chunk of the actual cosmos, containing 12 million galaxies and spanning the time from 400 million years after the Big Bang to the present day.

Each "Ex-Machina" universe was put through a series of tests to evaluate how similar galaxies appeared in the generated universe compared to the true universe. The universes most similar to our own all had similar underlying physical rules, demonstrating a powerful new approach for studying galaxy formation.

The results from the "UniverseMachine," as the authors call their approach, have helped resolve the long-standing paradox of why galaxies cease to form new stars even when they retain plenty of hydrogen gas, the raw material from which stars are forged.

Commonly held ideas about how galaxies form stars involve a complex interplay between cold gas collapsing under the effect of gravity into dense pockets giving rise to stars, while other processes counteract star formation.

For example, it is thought that most galaxies harbor supermassive black holes in their centers. Matter falling into these black holes radiates tremendous energies, acting as cosmic blowtorches that prevent gas from cooling down enough to collapse into stellar nurseries. Similarly, stars ending their lives in supernova explosions contribute to this process. Dark matter, too, plays a big role, as it provides for most of the gravitational force acting on the visible matter in a galaxy, pulling in cold gas from the galaxy's surroundings and heating it up in the process.

"As we go back earlier and earlier in the universe, we would expect the dark matter to be denser, and therefore the gas to be getting hotter and hotter. This is bad for star formation, so we had thought that many galaxies in the early universe should have stopped forming stars a long time ago," Behroozi said. "But we found the opposite: galaxies of a given size were more likely to form stars at a higher rate, contrary to the expectation."

In order to match observations of actual galaxies, Behroozi explained, his team had to create virtual universes in which the opposite was the case - universes in which galaxies kept churning out stars for much longer.

If, on the other hand, the researchers created universes based on current theories of galaxy formation - universes in which the galaxies stopped forming stars early on - those galaxies appeared much redder than the galaxies we see in the sky.

Galaxies appear red for two reasons. The first is apparent in nature and has to do with a galaxy's age - if it formed earlier in the history of the universe, it will be moving away faster, shifting the light into the red spectrum. Astronomers call this effect redshift. The other reason is intrinsic: - if a galaxy has stopped forming stars, it will contain fewer blue stars, which typically die out sooner, and be left with older, redder stars.

"But we don't see that," Behroozi said. "If galaxies behaved as we thought and stopped forming stars earlier, our actual universe would be colored all wrong. In other words, we are forced to conclude that galaxies formed stars more efficiently in the early times than we thought. And what this tells us is that the energy created by supermassive black holes and exploding stars is less efficient at stifling star formation than our theories predicted."

According to Behroozi, creating mock universes of unprecedented complexity required an entirely new approach that was not limited by computing power and memory, and provided enough resolution to span the scales from the "small" - individual objects such as supernovae - to a sizeable chunk of the observable universe.

"Simulating a single galaxy requires 10 to the 48th computing operations," he explained. "All computers on Earth combined could not do this in a hundred years. So to just simulate a single galaxy, let alone 12 million, we had to do this differently."

In addition to utilizing computing resources at NASA Ames Research Center and the Leibniz-Rechenzentrum in Garching, Germany, the team used the "Ocelote" supercomputer at the UA High Performance Computing cluster. Two-thousand processors crunched the data simultaneously over three weeks. Over the course of the research project, Behroozi and his colleagues generated more than 8 million universes.

"We took the past 20 years of astronomical observations and compared them to the millions of mock universes we generated," Behroozi explained. "We pieced together thousands of pieces of information to see which ones matched. Did the universe we created look right? If not, we'd go back and make modifications, and check again."

To further understand how galaxies came to be, Behroozi and his colleagues plan to expand the UniverseMachine to include the morphology of individual galaxies and how their shapes evolve over time.

Research Report: "UNIVERSEMACHINE: The Correlation between Galaxy Growth and Dark Matter Halo Assembly from z = 0-10"


Related Links
University of Arizona
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Astronomers Map Vast Void in Our Cosmic Neighborhood
Honolulu HI (SPX) Jul 23, 2019
An astronomer from the University of Hawaii Institute for Astronomy (IfA) and an international team published a new study that reveals more of the vast cosmic structure surrounding our Milky Way galaxy. The universe is a tapestry of galaxy congregations and vast voids. In a new study being reported in the Astrophysical Journal, Brent Tully's team applies the same tools from an earlier study to map the size and shape of an extensive empty region they called the Local Void that borders the Milky Way ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Two weeks of science and beyond on ISS

Orion Service Module completes critical propulsion test

As iPhone sales sputter, Apple moves toward reinvention, again

Study identifies way to enhance the sustainability of manufactured soils

STELLAR CHEMISTRY
SpaceX launches Falcon 9 carrying Israel's AMOS-17 satellite

Pentagon working on 9 separate hypersonic missile projects to take on Russia, China

Little SLS launches in low speed wind tunnel

Paragon Space Development Corporation CELSIUS Technology NASA Tipping Point Contract Award

STELLAR CHEMISTRY
New finds for Mars rover, seven years after landing

Optometrists verify Mars 2020 rover's perfect vision

MEDLI2 installation on Mars 2020 aeroshell begins

World first as kits designed to extract metals from the Moon and Mars blast off for space station tests

STELLAR CHEMISTRY
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

STELLAR CHEMISTRY
Arianespace launches INTELSAT 39 and EDRS-C

Companies partner to offer a complete solution for space missions as a service

Space data relay system shows its speed

Next satellite in the European Data Relay System is fuelled

STELLAR CHEMISTRY
Millennium Space Systems to test orbital debris solutions with TriSept, Rocket Lab and Tethers Unlimited

How roads can help cool sizzling cities

Could Mexico cactus solve world's plastics problem?

Recovering color images from scattered light

STELLAR CHEMISTRY
Dead planets can 'broadcast' for up to a billion years

Hordes of Earth's toughest creatures may now be living on Moon

Pre-life building blocks spontaneously align in evolutionary experiment

Shining starlight on the search for life

STELLAR CHEMISTRY
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.