. 24/7 Space News .
STELLAR CHEMISTRY
Using optical chaos to control the momentum of light
by Staff Writers
Boston MA (SPX) Oct 20, 2017


Coupling the optical fields from waveguides to the optical fields in whispering galleries in photonic circuits is like trying to transfer a package between a bike and a car on a highway. But, with chaos, the photons could be efficiently delivered to the optical mode. (Illustration courtesy of Yin Feng and Xuejun Huang)

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. One major hurdle is that light travels at different speeds and in different phases in different components of an integrated circuit. For light to couple between optical components, it needs to be moving at the same momentum.

Now, a team of researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences, in collaboration with Peking University in Beijing, has demonstrated a new way to control the momentum of broadband light in a widely-used optical component known as a whispering gallery microcavity (WGM).

The paper, whose co-authors also include researchers from Washington University in Saint Louis, the California Institute of Technology, and the University of Magdeburg, is published in Science.

"The broadband optical chaos in microcavity is creating a universal tool to access many optical states," said Linbo Shao, a graduate student in the lab of Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering, at SEAS and co-first author of the paper. "Previously, researchers need multiple special optical elements to couple light in and out WGMs at different wavelengths, but by this work we can couple all color lights with a single optical coupler."

A WGM is a type of optical microresonator used in a wide variety of applications, from long-range transmission in optical fibers to quantum computing. WGMs are named for the whispering galleries of St. Paul's Cathedral in London, where an acoustic wave (a whisper) circulates inside a cavity (the dome) from a speaker on one side to a listener on the other. The similar phenomena occurs in the Echo Wall in the Temple of Heaven in China and in the whispering arch in Grand Central Station in New York City.

Optical whispering galleries work much the same way. Light waves trapped in a highly-confined, circular space - smaller than a strand of hair - orbit around the inside of the cavity. Like the whispering wall, the cavity traps and carries the wave.

However, it is difficult to couple the optical fields from waveguides to the optical fields in whispering galleries in photonic circuits because the waves are traveling at different speeds.

Think of a WGM as a highway roundabout and optical fields as UPS trucks. Now, imagine trying to transfer a package between two trucks while both are moving at different speeds. Impossible, right?

In order to solve for this difference of momentum - without breaking Newton's law of the conservation of momentum - the research team created a little chaos. By deforming the shape of the optical microresonator, the researchers were able to create and harness so-called chaotic channels, in which the angular momentum of light is not conserved and can change over time. By alternating the shape of the resonator, the momentum can be tuned; the resonator can be designed to match momentum between waveguides and WGMs. Importantly, the coupling is broadband and occurs between optical states that would otherwise not couple.

The research provides new applications for microcavity optics and photonics in optical quantum processing, optical storage and more.

"The work illustrates a fundamentally different approach to probe this important class of microresonators while also revealing beautiful physics relating to the subject of optical chaos," said Kerry Vahala, the Ted and Ginger Jenkins Professor of Information Science and Technology and Professor of Applied Physics at Cal Tech, who was not involved in this research.

Next, the team will explore the physics of optical chaos in other optical platforms and materials, including photonic crystals and diamonds.

STELLAR CHEMISTRY
Deep Space Communications via Faraway Photons
Pasadena CA (JPL) Oct 20, 2017
A spacecraft destined to explore a unique asteroid will also test new communication hardware that uses lasers instead of radio waves. The Deep Space Optical Communications (DSOC) package aboard NASA's Psyche mission utilizes photons - the fundamental particle of visible light - to transmit more data in a given amount of time. The DSOC goal is to increase spacecraft communications performan ... read more

Related Links
Harvard School of Engineering and Applied Sciences
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Plants and psychological well-being in space

Russia's space agency says glitch in manned Soyuz landing

Russia launches cargo ship to space station

Roscosmos: International Space Exploration to Continue Despite Geopolitical Situation

STELLAR CHEMISTRY
ESA role in Europe's first all-electric telecom satellite

Lockheed Martin Launches Second Cycle of 'Girls' Rocketry Challenge' in Japan

First Four Space Launch System Flight Engines Ready To Rumble

Rocket motor for Ariane 6 and Vega-C is cast for testing

STELLAR CHEMISTRY
Solar eruptions could electrify Martian moons

MAVEN finds Mars has a twisted tail

A mission to Mars could make its own oxygen thanks to plasma technology

Study shows how water could have flowed on 'cold and icy' ancient Mars

STELLAR CHEMISTRY
China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

China's cargo spacecraft separates from Tiangong-2 space lab

STELLAR CHEMISTRY
Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

SpaceX launches 10 satellites for Iridium mobile network

Lockheed Martin Completes First Flexible Solar Array for LM 2100 Satellite

STELLAR CHEMISTRY
The drop that's good to the very end

Study shows how rough microparticles can cause big problems

Chemical treatment improves quantum dot lasers

Missing link between new topological phases of matter discovered

STELLAR CHEMISTRY
New NASA study improves search for habitable worlds

A star that devoured its own planets

Astronomers find potential solution into how planets form

Giant Exoplanet Hunters: Look for Debris Disks

STELLAR CHEMISTRY
Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.