Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Untangling the mechanics of knots
by Staff Writers
Boston MA (SPX) Sep 09, 2015


The researchers carried out experiments to test how much force is required to tighten knots with an increasing number of twists.

Got rope? Then try this experiment: Cross both ends, left over right, then bring the left end under and out, as if tying a pair of shoelaces. If you repeat this sequence, you get what's called a "granny" knot. If, instead, you cross both ends again, this time right over left, you've created a sturdier "reef" knot.

The configuration, or "topology," of a knot determines its stiffness. For example, a granny knot is much easier to undo, as its configuration of twists creates weaker forces within the knot, compared with a reef knot. For centuries, sailors have observed such distinctions, choosing certain knots over others to secure vessels - largely by intuition and tradition.

Now researchers at MIT and Pierre et Marie Curie University in Paris have analyzed the mechanical forces underpinning simple knots, and come up with a theory that describes how a knot's topology determines its mechanical forces.

The researchers carried out experiments to test how much force is required to tighten knots with an increasing number of twists. They then compared their observations with their theoretical predictions, and found that the theory accurately predicted the force needed to close a knot, given its topology and the diameter and stiffness of the underlying strand.

"This is the first time, to the best of our knowledge, that precision model experiments and theory have been tied together to untangle the influence of topology on the mechanics of knots," the researchers write in a paper appearing in the journal Physical Review Letters.

Pedro Reis, the Gilbert W. Winslow Career Development Associate Professor in Civil Engineering and Mechanical Engineering, says the new knot theory may provide guidelines for choosing certain knot configurations for a given load-bearing application, such as braided steel cables, or surgical stitching patterns.

"Surgeons, of course, have a great deal of experience, and they know this knot is better for this stitching procedure than this knot," Reis says. "But can we further inform the process? While maybe these knots are used, we might show that some other knots, done in a certain way, may be preferable."

A twisted theory
Reis' colleague, French theoretician Basile Audoly, originally took on the problem of relating a knot's topology and mechanical forces. In previous work, Audoly, with his own colleague Sebastien Neukirch, had developed a theory based on observations of tightening a very simple, overhand knot, comprising only one twist. They then verified the theory with a slightly more complex knot with two twists. The theory, they concluded, should predict the forces required to tighten even more complex knots.

However, when Reis, together with his students Khalid Jawed and Peter Dieleman, performed similar experiments with knots of more than two twists, they found that the previous theory failed to predict the force needed to close the knots. Reis and Audoly teamed up to develop a more accurate theory for describing the topology and mechanics of a wider range of knots.

The researchers created knots from nitonol, a hyper-elastic wire that, even when bent at dramatic angles, will return to its original shape. Nitonol's elasticity and stiffness are well known.

To generate various topologies, the researchers tied knots with multiple overhand twists, creating increasingly longer braids. They then clamped one end of each braid to a table, used a mechanical arm to simultaneously pull the knot tight, and measured the force applied. From these experiments, they observed that a knot with 10 twists requires about 1,000 times more force to close than a knot with just one.

"When Pedro Reis showed me his experiments on knots with as much as 10 twists, and told me that they could resist such a high force, this first appeared to me to be far beyond what simple equations can capture," Audoly says. "Then, I thought it was a nice challenge."

From shoelaces to surgery
To come up with a theory to predict the forces observed, Reis and Audoly went through multiple iterations between the experiments and theory to identify the ingredients that mattered the most and simplify the model. Eventually, they divided the problem in two parts, first characterizing the knot's loop, then its braid. For the first part, the researchers quantified the aspect ratio, or shape of a loop, given the number of twists in a braid: The more twists in a braid, the more elliptical the loop.

The team then studied the forces within the braid. As a braid, or twist, is symmetric, the researchers simplified the problem by only considering one strand of the braid.

"Then we write an energy for the system that includes bending, tension, and friction for that one helical strand, and we are able to determine the shape," Audoly says. "Once we have the shape, we can match it to this loop, and ultimately we get the overall force displacement response of the system."

To test the theory, Reis plugged the experiments' measurements into the theory to generate predictions of force.

"When we put the data through the machinery of the theory, the predictions and the dataset all collapse onto this master curve," Reis says. "Once we have this master curve, you can give me a bending stiffness and diameter of a strand, and the number of turns in the knot, and I can tell you what force is required to close it. Also, we now understand how the knot locks itself up when more turns are added."

Reis envisions multiple applications for the group's theory, both significant and mundane.

"This theory helps us predict the mechanical response of knots of different topologies," Reis says. "We're describing the force it requires to close a loop, which is an indicator of the stiffness of the knot. This might help us to understand something as simple as how your headphones get tangled, and how to better tie your shoes, to how the configuration of knots can help in surgical procedures."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Evidence suggests subatomic particles could defy the standard model
College Park MD (SPX) Aug 31, 2015
The Standard Model of particle physics, which explains most of the known behaviors and interactions of fundamental subatomic particles, has held up remarkably well over several decades. This far-reaching theory does have a few shortcomings, however--most notably that it doesn't account for gravity. In hopes of revealing new, non-standard particles and forces, physicists have been on the hunt for ... read more


TIME AND SPACE
Russia Eyes Moon for Hi-Tech Lunar Base

Russia Gets Ready for New Moon Landing

ASU chosen to lead lunar CubeSat mission

Russia's moon landing plan hindered by financial distress

TIME AND SPACE
ASU instruments help scientists probe ancient Mars atmosphere

What Happened to Early Mars' Atmosphere

Opportunity brushes a rock and conducts in-situ studies

Destination Red Planet: Will Billionaires Fund a Private Mars Colony

TIME AND SPACE
New Life for Old Buddy: Russia Tests Renewed Soyuz-MS Spacecraft

Opportunity found in lack of diversity in US tech sector

Boeing Revamps Production Facility for Starliner Flights

In Virginia, TechShop lets 'makers' tinker, innovate

TIME AND SPACE
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

TIME AND SPACE
Russian ISS Crew's Next Spacewalk Planned for February 2016

Mogensen begins busy ISS tour

Soyuz rocket with three astronauts launches towards ISS

Soyuz Heads to Space Station with New Crew

TIME AND SPACE
US Navy to Launch Folding-Fin Ground Attack Rocket on Scientific Mission

US Launches Atlas V Rocket With Navy Communications Satellite After Delay

FCube facility enters operations with fueling of Soyuz Fregat upper stage

SpaceX delays next launch after blast

TIME AND SPACE
Earth observations show how nitrogen may be detected on exoplanets, aiding search for life

Distant planet's interior chemistry may differ from our own

Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

TIME AND SPACE
Billie Holiday to return to New York stage -- by hologram

Half diamond, half cubic boron, all cutting business

Customizing 3-D printing

DNA-guided 3-D printing of human tissue is unveiled




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.