Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Customizing 3-D printing
by Staff Writers
Boston MA (SPX) Sep 07, 2015


A new Web-based interface for design novices allows a wide range of modifications to a basic design - such as a toy car or a black-and-white "yin-yang" cup - that are guaranteed to be both structurally stable and printable on a 3-D printer. Image courtesy of the researchers and edited by MIT News.

The technology behind 3-D printing is growing more and more common, but the ability to create designs for it is not. Any but the simplest designs require expertise with computer-aided design (CAD) applications, and even for the experts, the design process is immensely time consuming.

Researchers at MIT and the Interdisciplinary Center Herzliya in Israel aim to change that, with a new system that automatically turns CAD files into visual models that users can modify in real time, simply by moving virtual sliders on a Web page. Once the design meets the user's specifications, he or she hits the print button to send it to a 3-D printer.

"We envision a world where everything you buy can potentially be customized, and technologies such as 3-D printing promise that that might be cost-effective," says Masha Shugrina, an MIT graduate student in computer science and engineering and one of the new system's designers. "So the question we set out to answer was, 'How do you actually allow people to modify digital designs in a way that keeps them functional?'"

For a CAD user, modifying a design means changing numerical values in input fields and then waiting for as much as a minute while the program recalculates the geometry of the associated object.

Once the design is finalized, it has to be tested using simulation software. For designs intended for 3-D printers, compliance with the printers' specifications is one such test. But designers typically test their designs for structural stability and integrity as well. Those tests can take anywhere from several minutes to several hours, and they need to be rerun every time the design changes.

Advance work
Shugrina and her collaborators - her thesis advisor, Wojciech Matusik, an associate professor of electrical engineering and computer science at MIT, and Ariel Shamir of IDC Herzliya - are trying to turn visual design into something novices can do in real time. They presented their new system, dubbed "Fab Forms," at the Association for Computing Machinery's Siggraph conference, in August.

Fab Forms begins with a design created by a seasoned CAD user. It then sweeps through a wide range of values for the design's parameters - the numbers that a CAD user would typically change by hand - calculating the resulting geometries and storing them in a database.

For each of those geometries, the system also runs a battery of tests, specified by the designer, and it again stores the results. The whole process would take hundreds of hours on a single computer, but in their experiments, the researchers distributed the tasks among servers in the cloud.

In their experiments, the researchers used eight designs, including a high-heeled shoe, a chess set, a toy car, and a coffee mug. The system samples enough values of the design parameters to offer a good approximation of all the available options, but that number varies from design to design. In some cases, it was only a few thousand samples, but in others it was hundreds of thousands. The researchers also developed some clever techniques to exploit similarities in design variations to compress the data, but the largest data set still took up 17 gigabytes of memory.

Intuitive interface
Finally, the system generates a user interface, a Web page that can be opened in an ordinary browser. The interface consists of a central window, which displays a 3-D model of an object, and a group of sliders, which vary the parameters of the object's design. The system automatically weeds out all the parameter values that lead to unprintable or unstable designs, so the sliders are restricted to valid designs.

Moving one of the sliders - changing the height of the shoe's heel, say, or the width of the mug's base - sweeps through visual depictions of the associated geometries, presenting in real time what would take hours to calculate with a CAD program. "The sample density is high enough that it looks continuous to the user," Matusik says.

If, however, a particularly sharp-eyed user wanted a value for a parameter that fell between two of the samples stored in the database, the system can call up the CAD program, calculate the associated geometry, and then run tests on it. That might take several minutes, but at that point, the user will have a good idea of what the final design should look like.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
DNA-guided 3-D printing of human tissue is unveiled
San Francisco CA (SPX) Sep 03, 2015
A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These mini-tissues in a dish can be used to study how particular structural features of tissue affect normal growth or go awry in cancer. They could be used for therapeutic drug scree ... read more


TECH SPACE
China Plans Lunar Rover For Far Side of Moon

Russia Eyes Moon for Hi-Tech Lunar Base

Russia Gets Ready for New Moon Landing

ASU chosen to lead lunar CubeSat mission

TECH SPACE
One small step for man as astronaut controls robot from space

What Happened to Early Mars' Atmosphere

ASU instruments help scientists probe ancient Mars atmosphere

Opportunity brushes a rock and conducts in-situ studies

TECH SPACE
New Life for Old Buddy: Russia Tests Renewed Soyuz-MS Spacecraft

Opportunity found in lack of diversity in US tech sector

Boeing Revamps Production Facility for Starliner Flights

In Virginia, TechShop lets 'makers' tinker, innovate

TECH SPACE
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

TECH SPACE
Soyuz rocket with three astronauts launches towards ISS

Slam dunk for Andreas in space controlling rover on ground

Russian ISS Crew's Next Spacewalk Planned for February 2016

Mogensen begins busy ISS tour

TECH SPACE
US Launches Atlas V Rocket With Navy Communications Satellite After Delay

US Navy to Launch Folding-Fin Ground Attack Rocket on Scientific Mission

FCube facility enters operations with fueling of Soyuz Fregat upper stage

SpaceX delays next launch after blast

TECH SPACE
Earth observations show how nitrogen may be detected on exoplanets, aiding search for life

Distant planet's interior chemistry may differ from our own

Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

TECH SPACE
Self-sweeping laser could dramatically shrink 3-D mapping systems

Using ultrathin sheets to discover new class of wrapped shapes

Customizing 3-D printing

DNA-guided 3-D printing of human tissue is unveiled




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.