|
. | . |
|
by Staff Writers Boston MA (SPX) Sep 07, 2015
The technology behind 3-D printing is growing more and more common, but the ability to create designs for it is not. Any but the simplest designs require expertise with computer-aided design (CAD) applications, and even for the experts, the design process is immensely time consuming. Researchers at MIT and the Interdisciplinary Center Herzliya in Israel aim to change that, with a new system that automatically turns CAD files into visual models that users can modify in real time, simply by moving virtual sliders on a Web page. Once the design meets the user's specifications, he or she hits the print button to send it to a 3-D printer. "We envision a world where everything you buy can potentially be customized, and technologies such as 3-D printing promise that that might be cost-effective," says Masha Shugrina, an MIT graduate student in computer science and engineering and one of the new system's designers. "So the question we set out to answer was, 'How do you actually allow people to modify digital designs in a way that keeps them functional?'" For a CAD user, modifying a design means changing numerical values in input fields and then waiting for as much as a minute while the program recalculates the geometry of the associated object. Once the design is finalized, it has to be tested using simulation software. For designs intended for 3-D printers, compliance with the printers' specifications is one such test. But designers typically test their designs for structural stability and integrity as well. Those tests can take anywhere from several minutes to several hours, and they need to be rerun every time the design changes.
Advance work Fab Forms begins with a design created by a seasoned CAD user. It then sweeps through a wide range of values for the design's parameters - the numbers that a CAD user would typically change by hand - calculating the resulting geometries and storing them in a database. For each of those geometries, the system also runs a battery of tests, specified by the designer, and it again stores the results. The whole process would take hundreds of hours on a single computer, but in their experiments, the researchers distributed the tasks among servers in the cloud. In their experiments, the researchers used eight designs, including a high-heeled shoe, a chess set, a toy car, and a coffee mug. The system samples enough values of the design parameters to offer a good approximation of all the available options, but that number varies from design to design. In some cases, it was only a few thousand samples, but in others it was hundreds of thousands. The researchers also developed some clever techniques to exploit similarities in design variations to compress the data, but the largest data set still took up 17 gigabytes of memory.
Intuitive interface Moving one of the sliders - changing the height of the shoe's heel, say, or the width of the mug's base - sweeps through visual depictions of the associated geometries, presenting in real time what would take hours to calculate with a CAD program. "The sample density is high enough that it looks continuous to the user," Matusik says. If, however, a particularly sharp-eyed user wanted a value for a parameter that fell between two of the samples stored in the database, the system can call up the CAD program, calculate the associated geometry, and then run tests on it. That might take several minutes, but at that point, the user will have a good idea of what the final design should look like.
Related Links Massachusetts Institute of Technology Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |