. 24/7 Space News .
TIME AND SPACE
Unique insights into an exotic matter state
by Staff Writers
Kiel, Germany (SPX) Dec 19, 2018

file illustration only

The properties of the matter, which surrounds us in our everyday life, are typically the result of complex interactions between electrons. These electrically-charged particles are one of the fundamental building blocks of nature.

By now, they are well researched, and theoretical physics has determined the electronic structure of the majority of matter. However, how matter behaves under extreme conditions is still largely unexplained. These can be found in places where very high pressure and high temperatures prevail, such as in the interior of stars and planets. Here, matter exists in an exotic state on the border between solid, liquid and gas.

A research group at Kiel University and the Helmholtz-Zentrum Dresden-Rossendorf has now developed a new method to accurately describe the dynamic properties of this so-called "warm dense matter" for the first time. They have published their specially-developed computer simulations in the current issue of the renowned scientific journal Physical Review Letters.

Today, warm dense matter can also be produced experimentally in large research institutions, for example using the high-intensity lasers or free-electron lasers at the European XFEL in Hamburg and Schleswig-Holstein. Powerful lasers are used to compress and heat the matter enormously. It can then be examined using another laser.

A measurement of the so-called X-ray Thomson scattering - in other words, how the laser beam is scattered by free electrons - makes it possible to determine many properties of warm dense matter, such as its electrical conductivity, or its absorption of radiation.

However, this requires a comprehensive theoretical understanding of warm dense matter, and in particular of the so-called dynamic structure factor of the compressed hot electrons. To date, science has not been able to describe this reliably and accurately.

The interaction of the various factors which play a role here is just too complex, at temperatures of up to ten million degrees Celsius, and a density which usually only occurs in solids. In addition to the intense heat, this also includes the so-called Coulomb interaction, occurring when two negatively-charged electrons repel each other, as well as numerous quantum mechanical effects.

The research team under the direction of Michael Bonitz, professor of theoretical physics at the CAU, has now achieved a breakthrough: using complex simulations performed on supercomputers, they have developed a computational method, with which they could precisely describe the dynamic structure factor of electrons in warm dense matter for the first time. To achieve this, they further extended their own quantum Monte Carlo simulations, developed in recent years.

"Our new data provides unique insights," explained Bonitz. "Remarkably, it has already been shown that the exact description of the repulsion between negative charges results in a significantly-modified Thomson scattering signal, in particular to a drastically changed plasmon dispersion, compared with previous theories."

These predictions will now be checked experimentally. The results thus obtained are of extraordinary importance for the interpretation of state-of-the-art experiments with warm dense matter, such as those which will begin shortly at the European XFEL.

For example, they can be used to determine key properties, such as the temperature of the electrons, or the velocity of propagation of waves which arise if the matter is bombarded with lasers.

Research paper


Related Links
Kiel University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
On the trail of the Higgs Boson
Bologna, Italy (SPX) Dec 06, 2018
For the physics community, the discovery of new particles like the Higgs Boson has paved the way for a host of exciting potential experiments. Yet, when it comes to such an elusive particle as the Higgs Boson, it's not easy to unlock the secrets of the mechanism that led to its creation. The experiments designed to detect the Higgs Boson involve colliding particles with sufficiently high energy head-on after accelerating them in the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA astronaut, crewmates return to Earth after 197-Day mission in space

Queen guitarist Brian May releases tribute to NASA spacecraft

Astronauts land from ISS stint marred by air leak, rocket failure

NASA thanks Russia for prompt crew rescue after Soyuz accident

TIME AND SPACE
NZ-Dutch space startup raises 3M dollars

Elon Musk's SpaceX set to raise $500 mn: report

Russia to Decommission Carrier Vehicle With Ukraine-Made Components

Russia's Vostochny Cosmodrome to Have Only One Space Launch in 2019

TIME AND SPACE
InSight places its first instrument on Mars

InSight Engineers Have Made a Martian Rock Garden

Opportunity team performs more frequent communication attempts throughout each day

Planetary scientists assist in capturing image of Insight from orbit

TIME AND SPACE
China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

TIME AND SPACE
Scaled back OneWeb constellation Not to affect number of Soyuz boosters

Spacecraft Repo Operations

Update from ESA Council, December 2018

CAT rules in favour of Ofcom's EAN authorisation decision

TIME AND SPACE
Raytheon awarded $114M for AN/SPY-6V radar integration, production

Celestia wins major ESA contract for UK

System monitors radiation damage to materials in real-time

New megalibrary approach proves useful for the rapid discovery of new materials

TIME AND SPACE
Narrowing the universe in the search for life

A young star caught forming like a planet

Planets with Oxygen Don't Necessarily Have Life

Where did the hot Neptunes go

TIME AND SPACE
Ultima Thule's First Mystery: Lack of a 'Light Curve'

New Horizons Takes the Inside Course to Ultima Thule

Most Distant Solar System Object Ever Observed

A nuclear-powered 'tunnelbot' to search for life on Jupiter's icy moon Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.