Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Understanding breakups
by Staff Writers
Washington DC (SPX) Feb 01, 2017


These figures show how a nanodroplet breaks up when it impinges on the solid wall through molecular dynamic simulation in computer. There are 12,195 water molecules represented by the green particles in this figure (the droplet originally has a diameter of 8.6 nm). Image courtesy Li, Li and Chen.

As interest and demand for nanotechnology continues to rise, so will the need for nanoscale printing and spraying, which relies on depositing tiny drops of liquid onto a surface. Now researchers from Tsinghua University in Beijing have developed a new theory that describes how such a nanosized droplet deforms and breaks up when it strikes a surface.

The model, discussed in their publication appearing this week in Physics of Fluids, from AIP Publishing, could help researchers improve the quality of nanoscale printing and coating, important to everything from printing and coating tiny devices and structures to 3-D printing machines and robots.

When it comes to spraying coatings, for example, the smaller and faster the droplets are when they hit the surface, the better the quality of the coating, said Min Chen, a professor in the Engineering Mechanics Department at Tsinghua University. However, at certain impingement speeds, the droplets will break up and splatter, ruining the coating.

So to improve printing and spraying techniques, we need to better understand the conditions that cause droplets to deform when they hit a surface, as well as how they break. But because experimenting with nanosized droplets is very difficult, researchers often rely on computer simulations.

Bu-Xuan Li and Xin-Hao Li, along with Chen, used a technique called molecular dynamics simulation, in which they simulated every molecule that makes up a droplet of water. Each droplet, consisting of about 12,000 molecules, is about 8.6 nanometers in diameter and hits the surface at speeds of a few hundred meters per second. The computer simulates what happens when the collection of water molecules hits a flat surface.

"We developed an analytical model to describe the deformation process and another to describe the breakup process," Chen said. The deformation model improves upon the team's previous work, "but the breakup model is totally new."

The breakup model combines theory with the results from the simulations, providing a formula that researchers can use to calculate when a droplet will breakup. According to Chen, the model is ready for use in applications.

One limitation is that the model is only verified to work for droplets at the nanoscale, and not for bigger droplets. "The reason is that the way a droplet breaks up is different in macro and nanoscale," Bu-Xuan Li said.

The model also only applies to so-called Newtonian fluids like water. The researchers are now working on developing a model for non-Newtonian fluids, such as crude oil or the gooey mixture of cornstarch and water sometimes known as Oobleck. For example, a non-Newtonian model would be needed for 3-D printing polymers and biomaterials, such as human tissue and organs.

The model is also applicable for describing how water droplets collide with aircraft and form ice, which is a safety hazard. These water droplets, suspended in clouds, typically range from 20 to 50 micrometers - bigger than those in the simulations. Still, Chen said, their model is useful because not much is known about how those water droplets impinge on aircraft.

Research paper: "Spreading and breakup of nanodroplet impinging on surface"


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
New white paper reviews latest support for Redefinition of the Kilogram by 2018
Griefensee, Switzerland (SPX) Jan 31, 2017
The NewKILO JRP, a three-year project of the European Metrology Research Programme (EMRP) involving 13 National Metrology Institutes (NMIs) and co-funded by the European Union (EU), was completed in May 2015. The future definition will require the unit of mass to be realized in a vacuum, instead being maintained and used in air, which presents some challenges to establishing traceability to the ... read more


TECH SPACE
Full Braking at Alpha Centauri

New Era of Space Travel: Private Station May Replace ISS by Late 2020

Progress MS-03 cargo spacecraft to reenter January 31

Scientists and students tackle omics at NASA workshop

TECH SPACE
ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

Russia to call tender for 2nd Phase of Vostochny Spaceport construction in Fall

NASA sounding rocket launches into Alaskan night

Russia to check space flight engines over faulty parts

TECH SPACE
Similar-Looking Ridges on Mars Have Diverse Origins

Commercial Crew's Role in Path to Mars

Meteorite reveals 2 billion years of volcanic activity on Mars

Bursts of methane may have warmed early Mars

TECH SPACE
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

TECH SPACE
Space, Ukrainian-style: Through Crisis to Revival

ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

Shaping the Future: Aerospace Works to Ensure an Informed Space Policy

TECH SPACE
New material that contracts when heated holds great industrial potential

Flipping the switch on ammonia production

Understanding breakups

Aavid Thermacore Europe's technology will keep solar satellite cool

TECH SPACE
Dedicated Planet Imager Opens Its Eyes to Other Worlds

New planet imager delivers first science at Keck

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

TECH SPACE
Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement