. 24/7 Space News .
ENERGY TECH
UNIST researchers introduce novel catalyst for rechargeable metal-air batteries
by Staff Writers
Ulsan, South Korea (SPX) Oct 26, 2017


A mesoporous nanofiber of cation ordered perovskite was prepared via electrospinning process, which exhibited notable cell performance and exceptionally high stability for Zn-air battery.

Research in lithium-ion batteries has opened up a plethora of possibilities in the development of next-generation batteries. In particular, the metal-air batteries with significantly greater energy density close to that of gasoline per kilogram, has recently been acknowledged and invested by world's leading companies, like IBM.

A recent study, affiliated with UNIST has presented novel catalyst to accelerate the commercialization of metal-air batteries. This breakthrough has been jointly led by Professor Guntae Kim and Professor Jaephil Cho in the School of Energy and Chemical Engineering at UNIST in collaboration with Professor Yunfei Bu from Nanjing University of Science and Technology, Nanjing, China.

Their new catalyst possesses the structure of nanofiber-based perovskite materials and exhibits excellent electrochemical performance, close that of today's precious metal catalysts, yet still inexpensive.

A metal-air battery is a type of fuel cell or battery that uses the oxidation of a metal with oxygen from atmospheric air to produce electricity. It is equipped with an anode made up of pure metals - like lithium or zinc - and an air cathode that is connected to an inexhaustible source of air.

The catalysts in the air cathode aids the electrochemical reaction of the cell with oxygen gas. Metal-air batteries have attracted significant research attention as the new generation of high-performance batteries as they the advantages of (1) simple structure, (2) extremely high energy density, and (3) a relatively inexpensive production.

The currently existing metal-air batteries use rare and expensive metal catalysts for their air electrodes, such as platinum (Pt) and iridium oxide (IrO?). This has hindered its further commercialization into the marketplace.

In the study, Professor Kim and his research team have developed a new catalyst, using the cation ordered double perovskite with high electrical conductivity and catalyic performance. They prepared a series of PrBa0.5Sr0.5Co2-xFexO5+d (x = 0, 0.5, 1, 1.5, and 2, PBSCF) and determined the optimum cobalt (Co) and iron (Fe) contents through electrochemical evaluation.

"The structure of mesoporous PrBa0.5Sr0.5Co2-xFexO5+d nanofiber (PBSCF-NF) has high surface areas, result from uniform pore diameters," says Ohhun Gwon in the Combined M.S/Ph.D. of Energy and Chemical Engineering, the first author of the study. "This nanofiber has also brought significant improvements in the performance of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER)."

According to the research team, this nanofiber has improved the bi-functionality of ORR/OER. Particularly, the OER performance was about 9 times higher than that of state-of-the-art precious metal oxide IrO2 at overpotential of 0.3 V. Furthermore, it also demonstrated notable charge-discharge stability even at high current density in Zn-air batteries.

"We envision that the high electrochemical and catalytic performance of this material will play a major role in the commercialization of metal-air batteries," says Professor Kim. "Metal-air battery technology is still in its infancy and extensive additional research efforts appear to be required before a viable commercial implementation is developed."

He adds, "However, as many global corporates, such as IBM, Toyota, and Samsung Electronics are already working on the development of metal-air batteries, the technical challenges could soon be cleared out in a much faster pace than anticipated."

Research Report: "A Highly Efficient and Robust Cation Ordered Perovskite Oxides as a Bi-Functional Catalyst for Rechargeable Zinc-Air Batteries"

ENERGY TECH
When humidity benefits batteries
Montreal, Canada (SPX) Oct 26, 2017
Sometimes you can find simple solutions to complex problems, as demonstrated by the team of INRS's Dr. Lionel Roue, which cleverly improved the performance of silicon-based electrodes for lithium-ion batteries. It is well known that the robustness of the electrodes in these batteries, which are used in a host of devices, is key to their useful life. According to the team's paper published ... read more

Related Links
Ulsan National Institute of Science and Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Plants and psychological well-being in space

Spacewalkers fix robotic arm in time to grab next cargo ship

NASA develops and tests new housing for in-orbit science payloads

Russia's space agency says glitch in manned Soyuz landing

ENERGY TECH
NASA awards launch contracts for Landsat 9 and Sentinel-6A

It's a success! Blue Origin conducts first hot-fire test of BE-4 engine

ESA role in Europe's first all-electric telecom satellite

Lockheed Martin Launches Second Cycle of 'Girls' Rocketry Challenge' in Japan

ENERGY TECH
Mars Rover Mission Progresses Toward Resumed Drilling

Solar eruptions could electrify Martian moons

MAVEN finds Mars has a twisted tail

Mine craft for Mars

ENERGY TECH
Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

ENERGY TECH
Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

SpaceX launches 10 satellites for Iridium mobile network

ENERGY TECH
Turning a material upside down can sometimes make it softer

Selective memory makes data caches 50 percent more efficient

Electrode materials from the microwave oven

A quantum spin liquid

ENERGY TECH
New NASA study improves search for habitable worlds

From Comets Come Planets

A star that devoured its own planets

Astronomers find potential solution into how planets form

ENERGY TECH
Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.