Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















SPACE TRAVEL
Turning human waste into plastic, nutrients could aid long-distance space travel
by Staff Writers
Washington DC (SPX) Aug 23, 2017


Blenner's biological system includes a variety of strains of the yeast Yarrowia lipolytica. These organisms require both nitrogen and carbon to grow. Blenner's team discovered that the yeast can obtain their nitrogen from urea in untreated urine.

Imagine you're on your way to Mars, and you lose a crucial tool during a spacewalk. Not to worry, you'll simply re-enter your spacecraft and use some microorganisms to convert your urine and exhaled carbon dioxide (CO2) into chemicals to make a new one. That's one of the ultimate goals of scientists who are developing ways to make long space trips feasible.

The researchers are presenting their results this week at the 254th National Meeting and Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features nearly 9,400 presentations on a wide range of science topics.

Astronauts can't take a lot of spare parts into space because every extra ounce adds to the cost of fuel needed to escape Earth's gravity. "If astronauts are going to make journeys that span several years, we'll need to find a way to reuse and recycle everything they bring with them," Mark A. Blenner, Ph.D., says. "Atom economy will become really important."

The solution lies in part with the astronauts themselves, who will constantly generate waste from breathing, eating and using materials. Unlike their friends on Earth, Blenner says, these spacefarers won't want to throw any waste molecules away. So he and his team are studying how to repurpose these molecules and convert them into products the astronauts need, such as polyesters and nutrients.

Some essential nutrients, such as omega-3 fatty acids, have a shelf life of just a couple of years, says Blenner, who is at Clemson University. They'll need to be made en route, beginning a few years after launch, or at the destination.

"Having a biological system that astronauts can awaken from a dormant state to start producing what they need, when they need it, is the motivation for our project," he says.

Blenner's biological system includes a variety of strains of the yeast Yarrowia lipolytica. These organisms require both nitrogen and carbon to grow. Blenner's team discovered that the yeast can obtain their nitrogen from urea in untreated urine.

Meanwhile, the yeast obtain their carbon from CO2, which could come from astronauts' exhaled breath, or from the Martian atmosphere. But to use CO2, the yeast require a middleman to "fix" the carbon into a form they can ingest. For this purpose, the yeast rely on photosynthetic cyanobacteria or algae provided by the researchers.

One of the yeast strains produces omega-3 fatty acids, which contribute to heart, eye and brain health. Another strain has been engineered to churn out monomers and link them to make polyester polymers.

Those polymers could then be used in a 3-D printer to generate new plastic parts. Blenner's team is continuing to engineer this yeast strain to produce a variety of monomers that can be polymerized into different types of polyesters with a range of properties.

For now, the engineered yeast strains can produce only small amounts of polyesters or nutrients, but the scientists are working on boosting output. They're also looking into applications here on Earth, in fish farming and human nutrition. For example, fish raised via aquaculture need to be given omega-3 fatty acid supplements, which could be produced by Blenner's yeast strains.

Although other research groups are also putting yeast to work, they aren't taking the same approach. For example, a team from DuPont is already using yeast to make omega-3 fatty acids for aquaculture, but its yeast feed on refined sugar instead of waste products, Blenner says. Meanwhile, two other teams are engineering yeast to make polyesters. However, unlike Blenner's group, they aren't engineering the organisms to optimize the type of polyester produced, he says.

Whatever their approach, these researchers are all adding to the body of knowledge about Y. lipolytica, which has been studied much less than, say, the yeast used in beer production.

"We're learning that Y. lipolytica is quite a bit different than other yeast in their genetics and biochemical nature," Blenner says. "Every new organism has some amount of quirkiness that you have to focus on and understand better."

A video on the research is available here

SPACE TRAVEL
Astronauts grow cucumbers in space to help scientists understand root growth
Washington (UPI) Jul 21, 2017
Which factor is more important to root growth: gravity or water? To find out, scientists recruited astronauts to grow cucumbers on the International Space Station. In the soil, roots seek out higher concentrations of water. The tendency is called hydrotropism. Roots also tend to grow downward as a result of gravity, a pattern called gravitropism. But researchers haven't been able ... read more

Related Links
American Chemical Society
Space Tourism, Space Transport and Space Exploration News

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
System tests prepare Orion for deep space exploration

An era of continuous space communications of with TDRS

NASA launches latest TDRS communications satellite

Russian Space Cameras on ISS May Replace US Models in 2018

SPACE TRAVEL
Equipment for Angara heavy-class rocket arrives at Vostochny Cosmodrome

Soyuz-2 Rocket to Arrive at Vostochny on September 20 for November Launch

New thruster design increases efficiency for future spaceflight

Russia's S7 group plans to resume Zenit launches from Sea Launch platform

SPACE TRAVEL
Mars weather: 'Cloudy, chance of nighttime snowstorm'

Mars 2020 mission to use smart methods to seek signs of past life

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

SPACE TRAVEL
China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

SPACE TRAVEL
Bids for government funding prove strong interest in LaunchUK

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Blue Sky Network Reaffirms Commitment to Brazilian Market

SPACE TRAVEL
Cosmonauts launch 3D-printed satellite from space station

NASA protects its super heroes from space weather

Researchers use vacuum for hands-free patterning of liquid metal

Surprise discovery in the search for energy efficient information storage

SPACE TRAVEL
Earth-like planet in star system only 16 light years away

A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

SPACE TRAVEL
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement