. 24/7 Space News .
WATER WORLD
Tropical groundwater resources resilient to climate change
by Staff Writers
London, UK (SPX) Dec 17, 2015


This is an artesian well in central semi-arid Tanzania. Image courtesy Jasechko, S and Taylor, R.G. For a larger version of this image please go here.

Tropical groundwater may prove to be a climate-resilient source of freshwater in the tropics as intense rainfall favours the replenishment of these resources, according to a new study published in Environmental Research Letters.

As climate observations show that global warming leads to fewer but more intense rainfalls, a clearer understanding of how these sources are replenished is crucial for developing strategies for groundwater usage that are better adapted to the greater variability in rainfall and river discharge brought about by climate change.

To examine how these resources are replenished, Professor Richard Taylor (UCL) and Dr Scott Jasechko (University of Calgary) assessed the chemical signatures in precipitation and groundwater at 15 sites across the tropics.

By comparing the stable isotopes of oxygen and hydrogen in water molecules from precipitation and groundwater, it was found that groundwater recharge occurs disproportionately from heavy rainfalls. In this instance heavy rainfall was defined as those exceeding the 50th percentile of local rainfall intensity.

Professor Richard Taylor (UCL Geography) said: "Our results suggest that the intense rainfall brought about by global warming strongly favours the renewal of groundwater resources. As over half the world's population is predicted to live in the tropics by 2050, dependence on groundwater as a resource will continue to rise.

"It is important to note that the results simply indicate a tendency towards increased groundwater recharge from extreme rainfall. Other influences on groundwater storage including excessive pumpage, substantial changes in total precipitation, and land-use change can undermine and overwhelm this resilience of groundwater resources in the tropics to climate change."

Groundwater is an invaluable source of freshwater across the tropics, enabling access to safe drinking water and often used for agricultural irrigation. The long-term viability of groundwater resources, and the livelihoods and ecosystems sustained by it, therefore relies on the replenishment of these sources.

Dr Scott Jasechko (University of Calgary) who led the study said: "Groundwater is a life-sustaining resource for many people in the tropics. Future research will explore how the combination of climate change and pumping will impact the availability of groundwater supplies across the tropics."

Jasechko, S and Taylor, R.G 'Intensive rainfall recharges tropical groundwaters' was published in Environmental Research Letters 11 December 2015


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University College London
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Deep core of African lake gives insight to ancient lake levels, biodiversity
Syracuse NY (SPX) Dec 14, 2015
Syracuse Earth sciences professor Christopher Scholz and former Ph.D. student Robert Lyons have an unprecedented glimpse into the past of a lake with explosive biodiversity. Along with colleagues from six other universities, Scholz and Lyons have unearthed a 380-meter-deep time capsule from Lake Malawi. Lyons says the core shows that "East African moisture history over the last 1.3 million years ... read more


WATER WORLD
XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

WATER WORLD
Opportunity on west rim of Endeavour Crater within Marathon Valley

Curiosity reaches sand dunes

NASA's Curiosity rover reaches Martian sand dunes

Mars Mission Team Addressing Vacuum Leak on Key Science Instrument

WATER WORLD
China drives global patent applications to new high

Australia seeks 'ideas boom' with tax breaks, visa boosts

A Year After Maiden Voyage, Orion Progress Continues

NASA's Work to Understand Climate: A Global Perspective

WATER WORLD
China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

WATER WORLD
First Briton to travel to ISS blasts off into space

Tim Peake begins six-month stay on Space Station

British astronaut swaps family Christmas for space mission

Three astronauts land back on Earth from space station

WATER WORLD
Japan to launch X-ray astronomy satellite after 2 months

Russia Puts Military Satellite Into Orbit on December 13

China Launches New ChinaSat 1C Communication Satellite

GSDO review marks progress for KSC's modernization

WATER WORLD
Hubble reveals diversity of exoplanet atmosphere

Mystery of missing exoplanet water solved

Student helps discover new planet, calculates frequency of Jupiter-like planets

What kinds of stars form rocky planets

WATER WORLD
Scientists create atomically thin boron

Turning rice farming waste into useful silica compounds

Hybrid material presents potential for 4-D-printed adaptive devices

The artificial materials that came in from the cold









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.