Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















TECH SPACE
The strangeness of slow dynamics
by Staff Writers
Washington DC (SPX) Mar 17, 2017


Susceptibility diagrams for model calculations in (a-c) and experiments in (d). The TPT in (a) and the fast DPT in (b) are analogous, while the slow DPTs in (c) and (d) show sidebands that are absent in the TPT. The conjugate field is the external applied field H in (a), and the bias field Hb in (b-d). [The experimental diagram in (d) represents fluctuations rather than susceptibility. Both quantities are found to behave in an identical manner, but the fluctuations show better noise performance.] Image courtesy nanoGUNE.

In a recent article published in Physical Review Letters (PRL 118, 117202 (2017)), researchers from the Nanomagnetism group at nanoGUNE reported so-far unknown anomalies near dynamic phase transitions (DPTs).

Such anomalies do not exist in corresponding thermodynamic phase transitions (TPTs), and thus, they constitute a distinct difference between DPTs and TPTs, even though their equivalency was the key outcome of more than two decades of research by many groups around the globe.

The study of dynamic behavior and kinetic pattern formation in interacting systems is a crucially important aspect of science, given that they are present in such diverse areas as laser emission, the formation of sand dunes or brain activity. Correspondingly, the study of non-equilibrium dynamic phenomena is of utmost importance, and its detailed understanding crucially relies on appropriate models.

One of these models is the widely used kinetic Ising Model (kIM), which can exhibit qualitatively different types of dynamic behavior, including dynamic phase transitions, despite its simplicity.

After more than two decades of research using the kIM, consensus emerged that the properties of DPTs are truly analogous to those of TPTs. The new work by the nanoGUNE team, however, revealed that these similarities between dynamic and thermodynamic phase transitions are far more limited than previously thought.

Surprisingly, the newly published work reported the most significant deviations to occur when the dynamics is slow. This is unexpected, because slow dynamics is generally understood to approach thermodynamic behavior, and most experimental studies of equilibrium properties are in fact slow dynamics studies, in which the external parameters are changed so slowly that the system can be presumed to be arbitrarily close to thermodynamic equilibrium conditions.

However, the new work by Riego et al. shows that slow DPTs are very different from conventional TPTs, whereas fast DPTs exhibit the previously postulated full equivalency to TPTs.

In their now published work, the authors studied by means of experiments and computations the detailed behavior of a ferromagnetic system that mimics the kIM upon being subjected to a combination of an oscillatory magnetic field of amplitude H0 and period P, and a constant bias field Hb.

When the field is swept fast, the magnetization M of the system cannot follow the field reversal and thus exhibits a nonzero cycle-averaged value Q= , which is the order parameter of the dynamic state.

So far, Q(P,Hb ) diagrams of DPTs were assumed to be equivalent to M(T,H), diagrams for TPTs with T and H being the temperature and applied field, respectively.

Concomitantly, the susceptibility diagrams were understood to be identical exhibiting a single sharp peak due to the susceptibility divergence at the critical point.

However, the detailed study by the nanoGUNE researchers now shows that there are anomalous additional features occurring for DPTs in cases of slow dynamic phase transitions, which appear as susceptibility side-bands in the paramagnetic state, and for which no equivalency exists in TPTs. Only for fast DPTs, the equivalency to TPTs is preserved as can be seen in the figure.

Research paper

TECH SPACE
Groundbreaking process for creating ultra-selective separation membranes
Minneapolis MN (SPX) Mar 17, 2017
A team of researchers, led by the University of Minnesota, has developed a groundbreaking one-step, crystal growth process for making ultra-thin layers of material with molecular-sized pores. Researchers demonstrated the use of the material, called zeolite nanosheets, by making ultra-selective membranes for chemical separations. These new membranes can separate individual molecules based o ... read more

Related Links
Elhuyar Fundazioa
Space Technology News - Applications and Research

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Trump, NASA and a rare consensus: mission to Mars

Russia to Build First New-Generation 'Federation' Spacecraft by 2021

COBALT Flight Demonstrations Fuse Technologies to Gain Precision Landing Results

NASA Selects New Research Teams to Further Solar System Research

TECH SPACE
N.Korea rocket test shows 'meaningful progress': South

SpaceX cargo ship returns to Earth

N. Korea's Kim hails engine test as 'new birth' for rocket industry

Delayed European rocket launch to go ahead after strike

TECH SPACE
Mars Volcano, Earth's Dinosaurs Went Extinct About the Same Time

Does Mars Have Rings? Not Right Now, But Maybe One Day

ExoMars: science checkout completed and aerobraking begins

Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

TECH SPACE
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

TECH SPACE
OneWeb Satellites breaks ground on high-volume satellite manufacturing facility

Globalsat Sky and Space Global sign MoU for testing and offering satellite service in Latin America

Start-Ups at the Final Frontier

Russia probes murder of senior space official in jail

TECH SPACE
The strangeness of slow dynamics

How fullerite becomes harder than diamond

Ecosystem For Near-Earth Space Control

Why water splashes: New theory reveals secrets

TECH SPACE
Operation of ancient biological clock uncovered

Fossil or inorganic structure? Scientists dig into early life forms

Gigantic Jupiter-type planet reveals insights into how planets evolve

Visualizing debris disk "roller derby" to understand planetary system evolution

TECH SPACE
Scientists make the case to restore Pluto's planet status

ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement