. 24/7 Space News .
TECTONICS
The search for the earthquake nucleus
by Staff Writers
Kiel, Germany (SPX) Aug 04, 2016


Schematic diagram of a subduction zone with sediments structure. Image courtesy C. Kersten GEOMAR. For a larger version of this image please go here.

Where a tectonic plate dives under another, in the so-called subduction zones at ocean margins, many strong earthquakes occur. Especially the earthquakes at shallow depths often cause tsunamis. How exactly are such earthquakes initiated? Which rock composition favours a break in the earth's interior that can lead to such natural disasters? Scientists at GEOMAR Helmholtz Centre for Ocean Research Kiel and the University of Utrecht (NL) published a study in the scientific journal Nature Geoscience which points to earthquake nucleation in calcareous sediments.

The effects of earthquakes are often severe and highly visible. They can destroy homes, induce slope failures and trigger tsunamis. The main cause for earthquakes are the stresses that occur in the Earth's interior, when two tectonic plates pass each other and interlock during this process. But even the worst earthquake starts with a very small first crack in the rock from which a large fracture can develop.

So far it was assumed that initial cracks for earthquakes mainly occur in clay-rich sediments. Scientists at GEOMAR Helmholtz Centre for Ocean Research Kiel and the University of Utrecht (NL) were now able to prove that under certain conditions calcareous sediments are the most likely candidates for the first breakage of an earthquake. The study is published in the international journal Nature Geoscience.

For their investigations the scientists used samples obtained during two expeditions in 2011 and 2012 with the US drillship JOIDES RESOLUTION off the coast of Costa Rica. There the Pacific Cocos plate is subducted beneath the Caribbean plate. In the past this has repeatedly led to severe earthquakes in this region.

"The aim of the Costa Rica Seismogenesis Project (CRISP) was to obtain information about the structure of the subducting and the overriding plate using drill cores" Dr. Michael Stipp from GEOMAR, initiator and second author of the current research study, explains.

During subduction the Cocos Plate carries its overlying sediments downwards, which are thus sandwiched between the plates.

"Off the coast of Costa Rica, the seismogenic zone that is the zone where earthquakes are generated along the plate boundary, starts already in an exceptionally shallow depth of about five to six kilometres. This is right in these subducted sediments," Robert Kurzawski states, PhD student at GEOMAR and first author of the study.

However, the sediments usually show variable compositions. Off the coast of Costa Rica and in most subduction zones in the tropical and subtropical area both clayey and calcareous sediment layers are found. Due to the drill cores obtained from JOIDES RESOLUTION the scientist could investigate samples exactly from these sediment layers.

In the "Rock Mechanics Laboratory" of the University of Utrecht they brought the samples to conditions that prevail at depth, where shallow earthquakes occur. "These conditions include an increased pressure, temperatures of about 100 degrees Celsius and finally shear movements," Dr. Stipp explains.

Since the clay sediments are considered mechanically weak, it was assumed that the first cracks would be formed in these when the subsurface stresses are large enough. In the experiments, it became clear that the clay-rich sediments from Costa Rica in contrast to the calcareous sediments react less sensitive to changes in stress, temperature and especially pore pressure.

The calcareous sediments, however, change their frictional properties significantly during the increase in temperature and pore pressure.

"Exactly at the conditions which are expected for shallow earthquakes the chalks suddenly got unstable and weaker than the clayey material. With these properties the calcareous sediments form the predetermined breaking point in the rock sequence, " Robert Kurzawski explains.

These results are particular interesting, because calcareous sediments are typical and widespread especially for tropical and subtropical oceans and thus occur at many subduction zones around the Pacific, but also in the Caribbean and Mediterranean Sea. "Of course we still do not know all the processes that can trigger earthquakes.

But we have demonstrated by this study that material properties cannot simply be extrapolated from surface conditions to those at greater depth. Therefore, further drilling, especially in the framework of the International Ocean Discovery Program (IODP), is required to learn more about the earthquake processes at depth, " Michael Stipp concludes.

Kurzawski, R. M., M. Stipp, A. R. Niemeijer, C. J. Spiers, J. H. Behrmann (2016): Earthquake nu-cleation in weak subducted carbonates. Nature Geoscience


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Helmholtz Centre for Ocean Research Kiel
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECTONICS
Earth's mantle appears to have a driving role in plate tectonics
Eugene OR (SPX) Jul 29, 2016
Deep down below us is a tug of war moving at less than the speed of growing fingernails. Keeping your balance is not a concern, but how the movement happens has been debated among geologists. New findings from under the Pacific Northwest Coast by University of Oregon and University of Washington scientists now suggest a solution to a mystery that surfaced when the theory of plate tectonics ... read more


TECTONICS
As dry as the moon

China's Jade Rabbit lunar rover dies in blaze of online glory

US company gets historic nod to send lander to moon

Heart hazard for Apollo astronauts: study

TECTONICS
Astrobiologists study Mars on Earth

Mars Gullies Likely Not Formed by Liquid Water

Opportunity Surpasses 43 Kilometers on the Odometer

Digging deeper into Mars

TECTONICS
After Deadly Crash, Virgin Galactic to Fly Its Spaceplane Once More

Tile Bonding Begins for Orion's First Mission Atop Space Launch System Rocket

Russia, US Discuss Lunar Station for Mars Mission

Disney theme park in Shanghai nears a million visitors

TECTONICS
China begins developing hybrid spacecraft

China to expand int'l astronauts exchange

China's Agreement with United Nations to Help Developing Countries Get Access to Space

Chinese tracking ship Yuanwang-7 starts maiden voyage

TECTONICS
JSC pursues collection of new technologies for ISS

Dream Chaser Spacecraft on Track to Supply Cargo to ISS

Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

TECTONICS
Russia to Launch Angara-1.2 Rocket With Korean Satellite KOMPSAT-6 in 2020

NASA Orders Second SpaceX Crew Mission to International Space Station

Russia Postpones Launch of Proton Rocket With US Satellite Until October 10

The rise of commercial spaceports

TECTONICS
Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

NASA's Next Planet Hunter Will Look Closer to Home

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

TECTONICS
Aladin wind probe ready for Aeolus

Humanity in Dire Need of Global System to Prevent In-Space Collisions

Lattice structure absorbs vibrations

Study looks at future of 2D materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.