Subscribe free to our newsletters via your
. 24/7 Space News .




BLUE SKY
The physics of clouds
by Staff Writers
Santa Barbara CA (SPX) Mar 16, 2015


Cloud streets -- long rows of cumulus clouds oriented parallel to the direction of the wind -- are an everyday example of natural turbulent convection. Image courtesy MODIS Rapid Response Team at NASA GSFC.

In 1941, Russian physicist Andrey Kolmogorov developed a theory of turbulence that has served as the basic foundation for our understanding of this important naturally occurring phenomenon.

Turbulence occurs when fluid flow is characterized by chaotic physical changes. Kolmogorov's theory has been interpreted to imply that transitions from one state of turbulence to another must be a smooth evolution because very intense fluctuations that are part of the process itself would smooth out anything sharp.

Now, however, a new experiment conducted by physicists at UC Santa Barbara disproves this interpretation of Kolmogorov's theory. Their results appear this week in the journal Physical Review Letters.

"In our paper we offer experimental evidence that these transitions are indeed sharp," said Guenter Ahlers, a professor in UCSB's Department of Physics. "We have been enlightened by these data and they have shown us that the interpretation of Kolmogorov was incorrect. To a physicist that is a very important step forward."

Ahlers and his postdoctoral co-workers Ping Wei and Stephan Weiss study turbulent convection, which plays a major role in numerous natural and industrial processes. Turbulent convection results when a contained fluid is heated from below and cooled from above. As the temperature differential increases, the convective flow becomes so vigorous that the velocity field becomes turbulent.

Using a cylindrical rotating system built by Ahlers' team, the researchers heated the fluid from the bottom so it expanded and became less dense than the liquid at the top. Earth's gravity caused the liquids to change positions with each other, which in turn created turbulence. Then the scientists added rotation.

"When you rotate, you get new forces acting, including the Coriolis Force -- a product of the Earth's rotation as well as of rotation in the laboratory -- which spins the liquid into little vortices or tornadoes," explained Ahlers.

"So the system is full of little tornadoes near the heating plate and also near the top -- only there, they are cold tornadoes," Ahlers added. "At first, these tornadoes are not connected because they are relatively short. But as you rotate the cylinder faster and faster, the tornadoes extend and eventually form columns over this whole system. When that happens, physicists say that the symmetry of the system changes."

The next step for Ahlers and his team was to measure the heat transport -- the exchange of thermal energy -- which is expressed by the Nusselt number. Wilhelm Nusselt was a German engineer in the early 1900s who measured the heat transport through double window panes.

"If you look at the Nusselt number, it has these breaks, which indicates that the heat transport does not change smoothly as the rotation rate is increased," Ahlers said. "By the way, Lev Landau told us that a long time ago. And while Landau wasn't talking about turbulent systems, his arguments can be directly carried over to the turbulence state."

Ahlers was referring to another Russian physicist, and a Nobel laureate, who theorized that when the symmetry of a system changes, the change must be sharp. It cannot be smooth because a system has only two states: disordered or ordered and there is nothing in between.

"The trouble is that people in turbulence never thought about Landau because he was in a completely different field and the information doesn't get carried across because there's just too much of it," Ahlers added. "But I worked in the field of critical phenomena for many, many years and know Landau's work very well. Then I changed to studying turbulence, and when this issue popped up, it was obvious to me what was going on."

In the paper, the researchers use cloud streets -- long rows of cumulus clouds oriented parallel to the direction of the wind -- as an everyday example of natural turbulent convection. These flat-bottomed, fluffy-topped clouds are formed when cold air blows over warmer waters and a warmer air layer (temperature inversion) rests over the top of both.

As the comparatively warm water gives up heat and moisture to the cold air above, columns of heated air called thermals naturally rise through the atmosphere. When the rising thermals hit the warm air layer, they roll over and loop back on themselves, creating parallel cylinders of rotating air that act similarly to the fluid in Ahlers' cylindrical rotating system. While the process sounds smooth, Ahlers' latest experiment proves that it is anything but.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Santa Barbara
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





BLUE SKY
Igniting the air for atmospheric research
Vienna, Austria (SPX) Feb 20, 2015
It looks a bit like a lightsaber from Star Wars: when an extremely intense laser pulse is sent through the air, it can focus itself, creating a narrow filament of light. By shooting such filaments into the sky and analysing back-scattered light, it would be possible to trace pollutants in the atmosphere. To achieve this, lasers with mid-infrared wavelengths are required. However, reaching ... read more


BLUE SKY
China Gets One Step Closer to Completing its Ambitious Lunar Mission

Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

BLUE SKY
Taking a Closer Look at Purple-Bluish Rock Formation

Mystery Giant Mars Plumes Still Unexplained

Have you ever used a camera on board an interplanetary spacecraft

Use of Rover Arm Expected to Resume in a Few Days

BLUE SKY
Chinese descend on remote Palau as wanderlust deepens

Merkel to open IT fair with China showcasing tech's shift east

Intergalactic GPS Will Guide You through the Stars

Space soprano plans first duet from ISS

BLUE SKY
China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

Tianzhou-1 cargo ship to dock with space lab in 2016

China's test spacecraft simulates orbital docking

BLUE SKY
International Space Station 'Lost' Without Russia Says NASA Chief

US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

BLUE SKY
Soyuz Installed at Baikonur, Expected to Launch Wednesday

45th Space Wing unveils multi-vehicle launch support center

THOR 7 being fueled for Arianespace's dual-payload April mission

Arianespace wins SES-15 launch contract

BLUE SKY
Scientists: Nearby Earth-like planet isn't just 'noise'

'Habitable' planet GJ 581d previously dismissed as noise probably does exist

Exorings on the Horizon

Planet 'Reared' by Four Parent Stars

BLUE SKY
New preschool lesson teaches programming theories

German govt okays bill to boost electronic appliance recyling

Researchers develop 'visual Turing test'

Understanding The Electromagnetic Environmental Effects On Space Systems




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.