Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Switchable material could enable new memory chips
by Staff Writers
Boston MA (SPX) Jan 26, 2016

This diagram shows how an electrical voltage can be used to modify the oxygen concentration, and therefore the phase and structure, of strontium cobaltites. Pumping oxygen in and out transforms the material from the brownmillerite form (left) to the perovskite form (right). Image courtesy of the researchers.

Two MIT researchers have developed a thin-film material whose phase and electrical properties can be switched between metallic and semiconducting simply by applying a small voltage. The material then stays in its new configuration until switched back by another voltage. The discovery could pave the way for a new kind of "nonvolatile" computer memory chip that retains information when the power is switched off, and for energy conversion and catalytic applications.

The findings, reported in the journal Nano Letters in a paper by MIT materials science graduate student Qiyang Lu and associate professor Bilge Yildiz, involve a thin-film material called a strontium cobaltite, or SrCoOx.

Usually, Yildiz says, the structural phase of a material is controlled by its composition, temperature, and pressure. "Here for the first time," she says, "we demonstrate that electrical bias can induce a phase transition in the material. And in fact we achieved this by changing the oxygen content in SrCoOx."

"It has two different structures that depend on how many oxygen atoms per unit cell it contains, and these two structures have quite different properties," Lu explains.

One of these configurations of the molecular structure is called perovskite, and the other is called brownmillerite. When more oxygen is present, it forms the tightly-enclosed, cage-like crystal structure of perovskite, whereas a lower concentration of oxygen produces the more open structure of brownmillerite.

The two forms have very different chemical, electrical, magnetic, and physical properties, and Lu and Yildiz found that the material can be flipped between the two forms with the application of a very tiny amount of voltage - just 30 millivolts (0.03 volts). And, once changed, the new configuration remains stable until it is flipped back by a second application of voltage.

Strontium cobaltites are just one example of a class of materials known as transition metal oxides, which is considered promising for a variety of applications including electrodes in fuel cells, membranes that allow oxygen to pass through for gas separation, and electronic devices such as memristors - a form of nonvolatile, ultrafast, and energy-efficient memory device. The ability to trigger such a phase change through the use of just a tiny voltage could open up many uses for these materials, the researchers say.

Previous work with strontium cobaltites relied on changes in the oxygen concentration in the surrounding gas atmosphere to control which of the two forms the material would take, but that is inherently a much slower and more difficult process to control, Lu says. "So our idea was, don't change the atmosphere, just apply a voltage."

"Voltage modifies the effective oxygen pressure that the material faces," Yildiz adds. To make that possible, the researchers deposited a very thin film of the material (the brownmillerite phase) onto a substrate, for which they used yttrium-stabilized zirconia.

In that setup, applying a voltage drives oxygen atoms into the material. Applying the opposite voltage has the reverse effect. To observe and demonstrate that the material did indeed go through this phase transition when the voltage was applied, the team used a technique called in-situ X-ray diffraction at MIT's Center for Materials Science and Engineering.

The basic principle of switching this material between the two phases by altering the gas pressure and temperature in the environment was developed within the last year by scientists at Oak Ridge National Laboratory. "While interesting, this is not a practical means for controlling device properties in use," says Yildiz. With their current work, the MIT researchers have enabled the control of the phase and electrical properties of this class of materials in a practical way, by applying an electrical charge.

In addition to memory devices, the material could ultimately find applications in fuel cells and electrodes for lithium ion batteries, Lu says.

"Our work has fundamental contributions by introducing electrical bias as a way to control the phase of an active material, and by laying the basic scientific groundwork for such novel energy and information processing devices," Yildiz adds.

In ongoing research, the team is working to better understand the electronic properties of the material in its different structures, and to extend this approach to other oxides of interest for memory and energy applications, in collaboration with MIT professor Harry Tuller.


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Dutch hi-tech group ASML posts 'record' year in 2015
The Hague (AFP) Jan 20, 2016
Leading Dutch manufacturer of computer chip making systems ASML Wednesday declared 2015 a "record" year for sales which rose to 6.3 billion euros ($6.9 billion), with net profits leaping by 15 percent. The company, seen as a global hi-tech bellwether for the microprocessing industry, said profits had reached 1.39 billion euros, compared with 1.2 billion in 2014. "Our full-year 2015 net ... read more

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

Rover uses Rock Abrasion Tool to grind rocks

Thales Alenia Space to supply reaction control subsystem for ExoMars

Money troubles may delay Europe-Russia Mars mission

Opportunity Welcomes Winter Solstice

Arab nations eye China, domestic market to revive tourism

Zinnias from space

Newcomer Sierra Nevada to supply ISS alongside SpaceX, Orbital: NASA

NASA's Scott Kelly unveils first flower grown in space: an orange zinnia

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

Water in US astronaut's helmet cuts short Briton's 1st spacewalk

Roscosmos prepares to launch first manned Soyuz MS

EpicNG satellite installed on Ariane 5 for launch

Building a robust commercial market in low earth orbit

NASA awards ISS cargo transport contracts

SpaceX will try to land its reusable rocket on an ocean dock

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

CSU imaging tool maps cells' composition in 3-D

Gloop from the deep sea

High-performance material polyimide for the first time with angular shape

Copper deposition to fabricate tiny 3-D objects

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.