Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Sunrise 2: A Second Look At The Sun
by Staff Writers
Gottingen, Germany (SPX) Mar 28, 2017

The solar observatory Sunrise is borne by a helium balloon to a float height of more than 35 kilometers. Image courtesy MPS.

During its two flights in 2009 and 2013, the balloon-borne solar observatory Sunrise experienced a unique view of our Sun: from a height of more than 35 kilometers and equipped with the largest solar telescope that had ever left Earth, Sunrise was able to resolve structures with a size of 50 kilometers in the Sun's ultraviolet (UV) light. The journal Astrophysical Journal Supplement Series now devotes a total of 13 articles to the results of the second flight of Sunrise.

These are complemented by four articles based on data from the first flight that have now been analyzed. In this way, the special edition paints the most comprehensive and detailed picture of the boundary layer between the visible surface of the Sun and its atmosphere in ultraviolet light.

The special issue reports, among other things, on hot explosions, oscillating fibril-like structures, and the origins of huge plasma flows. The Max Planck Institute for Solar System Research (MPS) in Germany, head of the Sunrise project, has a key stake in all 17 publications.

Many of the Sun's secrets are revealed only in the ultraviolet (UV) light that our star emits into space. However, since the Earth's atmosphere filters out most of this radiation, an observing position above this air layer is ideal for solar researchers. The balloon-borne solar observatory Sunrise offers access to this position - without the immense costs of a space mission. Carried by a huge helium balloon, Sunrise reaches an altitude of more than 35 kilometers, leaving most of the Earth's atmosphere underneath.

Twice already this concept has proven successful. While Sunrise witnessed an unexpectedly long activity minimum during its first flight in 2009, in 2013 our star presented itself from a more vigorous side: for almost six days, Sunrise had an excellent view of sunspots and active regions.

MPS researchers published first results from this flight a few months later. More clearly than ever before, the UV data reveal fine structures in the Sun's lower atmosphere only a few kilometers in size such as bright points and long-drawn fibrils near the sunspots.

Since approximately one year, most of the Sunrise II data has been fully reduced and is now the basis of 13 of the articles published this week. In these, the researchers for example elaborate their analysis of the fibril-like structures and determine their shape and lifetime. One of the results: their intensity and width fluctuate on time scales of a few seconds. Such detailed studies were made possible by the high resolution of Sunrise and the long series of observations.

"With a spatial resolution of 50 to 100 kilometers, Sunrise provides more accurate observational data in ultraviolet light than any other balloon-borne or space-based solar telescope," says Prof. Dr. Sami K. Solanki, director at the MPS and head of the Sunrise mission.

In addition, with its two instruments SuFI (Sunrise Filter Imager) and IMaX (Imaging Magnetograph Experiment), Sunrise looks at a key region of solar research.

In the area between the visible surface of the Sun, the photosphere, and the corona, the upper layer of the Sun's atmosphere, researchers hope to find answers to some of the most important open questions of solar physics: how is it possible that with approximately one million degrees the corona is significantly hotter than the photosphere with only 5,000 degrees?

In which way is the necessary energy from the photosphere transported into the corona and transformed into heat? What is the role of the Sun's dynamic, highly complex magnetic fields?

"Everything points to the fact that small-scale and short-lived processes are decisive," says Sunrise project scientist Dr. Tino Riethmuller from the MPS.

Discovering these is the mission of Sunrise. On the first day of the second flight, for example, the observatory witnessed an Ellermann bomb, an explosive but localized increase in radiation intensity and temperature. This phenomenon generally occurs in developing active regions and is regarded as a sign of dramatic reconstruction in the Sun's magnetic field.

Magnetic energy is thereby converted into heat, among other things. The simulations complementing the observational data suggest that these changes in the magnetic field architecture originate in the photosphere about 200 kilometers above the visible surface of the Sun.

Another process that connects the relatively cool photosphere with the hot corona are coronal loops, impressive arc-shaped plasma flows in the solar atmosphere. Some of them measure up to 100,000 kilometers in size. The starting points of these structures are often found in the vicinity of active regions.

The Sunrise data now allow a precise view of these "footprints." They prove to be places of strong magnetic contrasts: small regions in which the magnetic polarity is opposed to their predominant environment. The interaction of these areas drives mass and energy transport into the atmosphere.

"The data of the two Sunrise flights are a true treasure trove for solar physics," says Solanki. The analysis of the data will continue for years. In addition, the MPS is currently planning a third flight of the balloon-borne observatory.

Special Issue on Sunrise, 2017 March, Astrophysical Journal Supplement Series, Vol. 229, No. 1

Large-scale planetary waves found on the sun
Washington (UPI) Mar 27, 2017
Scientists at the National Center for Atmospheric Research have discovered Rossby waves on the sun. The large-scale planetary waves were first discovered on Earth. On Earth, Rossby waves are correlated with local weather events. On the sun, scientists suggest the waves could influence solar activity and related phenomena, like sunspots and solar flares. "The discovery of magnetiz ... read more

Related Links
Max Planck Institute for Solar System Research
Solar Science News at SpaceDaily

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Spacewalkers Connect Adapter for Commercial Crew Vehicles

The long legacy pf space-farming leading us to Mars

X-Hab working seventh season of academic-aided innovation

Deep space gateway to open opportunities for distant destinations

Evolution of Arianespace governance ensures greater coherence with Airbus Safran Launchers

SpaceX hails 'revolution' after recycled rocket launch, landing

SpaceX launches first recycled rocket

Musk diving into minds while reaching for Mars

New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

Final two ExoMars landing sites chosen

Mars dust storm west of Opportunity starting to abate

Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Vietnam set to produce satellites by 2022

Globalsat Sky and Space Global sign MoU for testing and offering satellite service in Latin America

OneWeb Satellites breaks ground on high-volume satellite manufacturing facility

Start-Ups at the Final Frontier

NASA laser communications to provide Orion faster connections

Space blanket floats away during historic spacewalk

'Ground Control' Arrives at Leicester University

Nanomagnets for future data storage

Astronomers identify purest, most massive brown dwarf

Fledgling stars try to prevent their neighbors from birthing planets

Fossil or inorganic structure? Scientists dig into early life forms

Gigantic Jupiter-type planet reveals insights into how planets evolve

ANU leads public search for Planet X

Juno Spacecraft Set for Fifth Jupiter Flyby

Scientists make the case to restore Pluto's planet status

ESA's Jupiter mission moves off the drawing board

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement