Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















SPACE MEDICINE
Study finds that gravity, 'mechanical loading' are key to cartilage development
by Staff Writers
Columbia MO (SPX) Aug 23, 2017


The spectrum of mechanical loading conditions applied to articular cartilage in the synovial joint. At one end of the spectrum, articular cartilage is subjected to cyclic hydrostatic pressure when an individual walks or runs. Alternatively, astronauts on long-term space missions experience mechanical unloading within their joints. To simulate these conditions experimentally, loading can be simulated using a hydrostatic pressure vessel and unloading can be simulated in a rotating wall vessel bioreactors.

Mechanical loading, or forces that stimulate cellular growth for development, is required for creating cartilage that is then turned to bone; however, little is known about cartilage development in the absence of gravity or mechanical loads.

Now, in a study led by the University of Missouri, bioengineers have determined that microgravity may inhibit cartilage formation. Findings reveal that fracture healing for astronauts in space, as well as patients on bed rest here on Earth, could be compromised in the absence of mechanical loading.

"Cartilage tissue engineering is a growing field because cartilage does not regenerate," said Elizabeth Loboa, dean of the MU College of Engineering and a professor of bioengineering.

"Because these tissues cannot renew themselves, bioreactors, or devices that support tissue and cell development, are used in many cartilage tissue engineering applications. Some studies suggest that microgravity bioreactors are ideal for the process to take place, while others show that bioreactors that mimic the hydrostatic pressure needed to produce cartilage might be more ideal. Our first-of-its-kind study was designed to test both theories."

Chondrogenic differentiation is the process by which cartilage is developed and cartilage is the basis for bone formation in the body. Additionally, cartilage does not renew itself once it breaks down or fails in the body, making it a target for bioengineers who wish to help patients regenerate cartilage from other cells.

Using human adipose, or fat cells (hASC) obtained from women, Loboa and her team tested chondrogenic differentiation in bioreactors that simulated either microgravity or hydrostatic pressure, which is the pressure that is exerted by a fluid.

Researchers found that cyclic hydrostatic pressure, which has been shown to be beneficial for cartilage formation, caused a threefold increase in cartilage production and resulted in stronger tissues. Microgravity, in turn, decreased chondrogenic differentiation.

"Our study provides insight showing that mechanical loading plays a critical role during cartilage development," Loboa said.

"The study also shows that microgravity, which is experienced in space and is similar to patients on prolonged bed rest or those who are paralyzed, may inhibit cartilage and bone formation. Bioengineers and flight surgeons involved with astronauts' health should consider this as they make decisions for regenerating cartilage in patients and during space travel."

The study, "Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC," was published in Aerospace Medicine and Human Performance. Funding was provided by the National Space Biomedical Research Institute through NASA (NCC9-58), the National Institutes of Health (IR03EB008790) and the National Science Foundation (1133437). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Liliana F. Mellor, Andrew J. Steward, Rachel C. Nordberg and Michael A. Taylor from the Joint Department of Biomedical Engineering at North Carolina State University and the University of North Carolina, contributed to the study.

SPACE MEDICINE
Computer approaches human skill for first time in mapping brain
Pullman WA (SPX) Aug 21, 2017
A WSU research team for the first time has developed a computer algorithm that is nearly as accurate as people are at mapping brain neural networks - a breakthrough that could speed up the image analysis that researchers use to understand brain circuitry. For more than a generation, people have been trying to improve understanding of human brain circuitry, but are challenged by its vast co ... read more

Related Links
University of Missouri-Columbia
Space Medicine Technology and Systems

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
System tests prepare Orion for deep space exploration

An era of continuous space communications of with TDRS

NASA launches latest TDRS communications satellite

Russian Space Cameras on ISS May Replace US Models in 2018

SPACE MEDICINE
Equipment for Angara heavy-class rocket arrives at Vostochny Cosmodrome

Soyuz-2 Rocket to Arrive at Vostochny on September 20 for November Launch

New thruster design increases efficiency for future spaceflight

Russia's S7 group plans to resume Zenit launches from Sea Launch platform

SPACE MEDICINE
Mars weather: 'Cloudy, chance of nighttime snowstorm'

Mars 2020 mission to use smart methods to seek signs of past life

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

SPACE MEDICINE
China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

SPACE MEDICINE
Bids for government funding prove strong interest in LaunchUK

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Blue Sky Network Reaffirms Commitment to Brazilian Market

SPACE MEDICINE
Cosmonauts launch 3D-printed satellite from space station

NASA protects its super heroes from space weather

Researchers use vacuum for hands-free patterning of liquid metal

Surprise discovery in the search for energy efficient information storage

SPACE MEDICINE
Earth-like planet in star system only 16 light years away

A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

SPACE MEDICINE
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement