. 24/7 Space News .
EARTH OBSERVATION
Stanford researchers calculate groundwater levels from satellite data
by Staff Writers
Stanford CA (SPX) Jun 14, 2016


Researchers from Stanford's School of Earth, Energy and Environmental Sciences have used satellite data and a new computer algorithm to gauge groundwater levels in Colorado's San Luis Valley agricultural basin.

A new computer algorithm developed at Stanford University is enabling scientists to use satellite data to determine groundwater levels across larger areas than ever before. The technique, detailed in the June issue of the journal Water Resources Research, could lead to better models of groundwater flow. "It could be especially useful in agricultural regions, where groundwater pumping is common and aquifer depletion is a concern," said study coauthor Rosemary Knight, a professor of geophysics in the Stanford School of Earth, Energy and Environmental Sciences.

Knight and her colleagues recently applied the algorithm to determine groundwater levels across the entire agricultural basin of Colorado's San Luis Valley. As a starting point, the algorithm uses data acquired using a satellite technology called Interferometric Synthetic Aperture Radar, or InSAR, to calculate changing groundwater levels in the San Luis Valley between 1992 and 2000.

InSAR satellites use electromagnetic waves to monitor tiny, centimeter-scale changes in the elevation of Earth's surface. The program was initially developed in the 1980s by NASA to collect data on volcanoes, earthquakes and landslides, but Knight and her colleague Howard Zebker, a professor of geophysics and of electrical engineering at Stanford, have in recent years adapted the technology for groundwater monitoring.

The Stanford scientists, led by former postdoctoral scholar Jessica Reeves, had previously shown that changes in surface elevation could be correlated with fluctuations in groundwater levels. However, they were only able to do so for a relatively small area because they had to manually identify and analyze high-quality pixels in InSAR satellite images not covered by crops or other surface features that could obscure elevation measurements.

The new algorithm, developed by Jingyi "Ann" Chen, a Stanford postdoctoral researcher in Knight's group, automates this previously time-consuming pixel selection process. "What we've demonstrated in this new study is a methodology that allows us to find high-quality InSAR pixels in many more locations throughout the San Luis Valley," said Chen, who is first author of the new study.

Chen's algorithm also goes a step further by filling in, or interpolating, groundwater levels in the spaces between pixels where high-quality InSAR data are not available. Interpolation is a form of averaging, but it requires high-quality InSAR data from places that are located near monitoring wells where groundwater levels are already known in order to calibrate the link between the InSAR data and groundwater levels.

In the previous work led by Reeves, only three monitoring wells were "co-located" with high-quality InSAR pixels. Using the new algorithm, that number increased to 16.

As a result, the team was able to calculate surface deformations - and, by extension, groundwater levels - for the entire agricultural basin of the San Luis Valley, an area covering about 4,000 square kilometers - or about five times greater than the area for which groundwater levels were calculated in the prior study. What's more, the team members were able to show how groundwater levels in the basin changed over time from 2007 to 2011 - the years when InSAR data that could be analyzed by the algorithm were available.

"Jessica showed that there was useful information in the InSAR-derived deformation, and Ann has made the technique for extracting that information reliable and practical," Zebker said.

Having a continuous map of deformation in the San Luis Valley led to the team discovering that there is a delay between the time when groundwater is pumped out of an aquifer and when the ground sinks, or subsides, in response to the water removal. These time lags might be useful indicators of the geological properties of an aquifer, said Knight.

"In a sand aquifer, there is no time lag between when the water is pumped out and the ground surface deforms," Knight said. "However, if clay is present, it will take much longer to deform in response to pumping, so there will be a detectable time lag."

The next step, Zebker said, is to take the information about groundwater levels and aquifer characteristics extracted from InSAR satellites and incorporate it with data from other sources to develop improved models of groundwater flow.

"The goal is to take into account the full water budget," Zebker said. "This means accounting for water recharge such as rainfall and for discharge sources such as evaporation and runoff."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stanford's School of Earth, Energy and Environmental Sciences
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARTH OBSERVATION
Helping satellites be right as rain
Washington DC (SPX) Jun 14, 2016
As you read this paragraph, a NASA satellite orbits around planet Earth, gathering data on - of all things - soil moisture. Moisture in the soil acts like a thermostat for the planet. Along with affecting agricultural production, it has a large influence on the weather and climate. Its impact on the planet is so important, NASA has sent a satellite into space to measure it. As sunlight is ... read more


EARTH OBSERVATION
US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

EARTH OBSERVATION
Musk explains his 'cargo route' to Mars

Remarkably diverse flora in Utah, USA, trains scientists for future missions on Mars

NASA Mars Orbiters Reveal Seasonal Dust Storm Pattern

Study of Opportunity Wheel Scuff Continues

EARTH OBSERVATION
TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

Second Starliner Begins Assembly in Florida Factory

EARTH OBSERVATION
Experts Fear Chinese Space Station Could Crash Into Earth

Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

NASA Chief: Congress Should Revise US-China Space Cooperation Law

EARTH OBSERVATION
Cygnus space capsule departs International Space Station

Russian, US Astronauts to Return From ISS on June 18

Astronauts enter inflatable room at space station

First steps into BEAM will expand the frontiers of habitats for space

EARTH OBSERVATION
MUOS-5 satellite encapsulated for launch

Airbus Safran Launchers confirms the maturity of the Ariane 6 launcher

Russian Proton-M Rocket Puts US Intelsat DLA-2 Satellite Into Orbit

US Senate reaches compromise on Russian rocket engines

EARTH OBSERVATION
New planet is largest discovered that orbits 2 suns

Cloudy Days on Exoplanets May Hide Atmospheric Water

Likely new planet may be in slow death spiral

On exoplanets, atmospheric water may be hiding behind clouds

EARTH OBSERVATION
Fighting virtual reality sickness

Cereal science: How scientists inverted the Cheerios effect

Can computers do magic?

New maths accurately captures liquids and surfaces moving in synergy









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.