. 24/7 Space News .
TIME AND SPACE
Some black holes erase your past
by Staff Writers
Berkeley CA (SPX) Feb 22, 2018

A spacetime diagram of the gravitational collapse of a charged spherical star to form a charged black hole. An observer traveling across the event horizon will eventually encounter the Cauchy horizon, the boundary of the region of spacetime that can be predicted from the initial data. UC Berkeley's Peter Hintz and his colleagues found that a region of spacetime, denoted by a question mark, cannot be predicted from the initial data in a universe with accelerating expansion, like our own. This violates the principle of strong cosmic censorship.

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space.

But a UC Berkeley mathematician has found some types of black holes in which this law breaks down. If someone were to venture into one of these relatively benign black holes, they could survive, but their past would be obliterated and they could have an infinite number of possible futures.

Such claims have been made in the past, and physicists have invoked "strong cosmic censorship" to explain it away. That is, something catastrophic - typically a horrible death - would prevent observers from actually entering a region of spacetime where their future was not uniquely determined. This principle, first proposed 40 years ago by physicist Roger Penrose, keeps sacrosanct an idea - determinism - key to any physical theory. That is, given the past and present, the physical laws of the universe do not allow more than one possible future.

But, says UC Berkeley postdoctoral fellow Peter Hintz, mathematical calculations show that for some specific types of black holes in a universe like ours, which is expanding at an accelerating rate, it is possible to survive the passage from a deterministic world into a non-deterministic black hole.

What life would be like in a space where the future was unpredictable is unclear. But the finding does not mean that Einstein's equations of general relativity, which so far perfectly describe the evolution of the cosmos, are wrong, said Hintz, a Clay Research Fellow.

"No physicist is going to travel into a black hole and measure it. This is a math question. But from that point of view, this makes Einstein's equations mathematically more interesting," he said. "This is a question one can really only study mathematically, but it has physical, almost philosophical implications, which makes it very cool."

"This ... conclusion corresponds to a severe failure of determinism in general relativity that cannot be taken lightly in view of the importance in modern cosmology" of accelerating expansion, said his colleagues at the University of Lisbon in Portugal, Vitor Cardoso, Joao Costa and Kyriakos Destounis, and at Utrecht University, Aron Jansen.

As quoted by Physics World, Gary Horowitz of UC Santa Barbara, who was not involved in the research, said that the study provides "the best evidence I know for a violation of strong cosmic censorship in a theory of gravity and electromagnetism."

Hintz and his colleagues published a paper describing these unusual black holes last month in the journal Physical Review Letters.

Beyond the event horizon
Black holes are bizarre objects that get their name from the fact that nothing can escape their gravity, not even light. If you venture too close and cross the so-called event horizon, you'll never escape.

For small black holes, you'd never survive such a close approach anyway. The tidal forces close to the event horizon are enough to spaghettify anything: that is, stretch it until it's a string of atoms.

But for large black holes, like the supermassive objects at the cores of galaxies like the Milky Way, which weigh tens of millions if not billions of times the mass of a star, crossing the event horizon would be, well, uneventful.

Because it should be possible to survive the transition from our world to the black hole world, physicists and mathematicians have long wondered what that world would look like, and have turned to Einstein's equations of general relativity to predict the world inside a black hole. These equations work well until an observer reaches the center or singularity, where in theoretical calculations the curvature of spacetime becomes infinite.

Even before reaching the center, however, a black hole explorer - who would never be able to communicate what she found to the outside world - could encounter some weird and deadly milestones. Hintz studies a specific type of black hole - a standard, non-rotating black hole with an electrical charge - and such an object has a so-called Cauchy horizon within the event horizon.

The Cauchy horizon is the spot where determinism breaks down, where the past no longer determines the future. Physicists, including Penrose, have argued that no observer could ever pass through the Cauchy horizon point because they would be annihilated.

As the argument goes, as an observer approaches the horizon, time slows down, since clocks tick slower in a strong gravitational field. As light, gravitational waves and anything else encountering the black hole fall inevitably toward the Cauchy horizon, an observer also falling inward would eventually see all this energy barreling in at the same time. In effect, all the energy the black hole sees over the lifetime of the universe hits the Cauchy horizon at the same time, blasting into oblivion any observer who gets that far.

You can't see forever in an expanding universe
Hintz realized, however, that this may not apply in an expanding universe that is accelerating, such as our own. Because spacetime is being increasingly pulled apart, much of the distant universe will not affect the black hole at all, since that energy can't travel faster than the speed of light.

In fact, the energy available to fall into the black hole is only that contained within the observable horizon: the volume of the universe that the black hole can expect to see over the course of its existence. For us, for example, the observable horizon is bigger than the 13.8 billion light years we can see into the past, because it includes everything that we will see forever into the future. The accelerating expansion of the universe will prevent us from seeing beyond a horizon of about 46.5 billion light years.

In that scenario, the expansion of the universe counteracts the amplification caused by time dilation inside the black hole, and for certain situations, cancels it entirely. In those cases - specifically, smooth, non-rotating black holes with a large electrical charge, so-called Reissner-Nordstrom-de Sitter black holes - an observer could survive passing through the Cauchy horizon and into a non-deterministic world.

"There are some exact solutions of Einstein's equations that are perfectly smooth, with no kinks, no tidal forces going to infinity, where everything is perfectly well behaved up to this Cauchy horizon and beyond," he said, noting that the passage through the horizon would be painful but brief. "After that, all bets are off; in some cases, such as a Reissner-Nordstrom-de Sitter black hole, one can avoid the central singularity altogether and live forever in a universe unknown."

Admittedly, he said, charged black holes are unlikely to exist, since they'd attract oppositely charged matter until they became neutral. However, the mathematical solutions for charged black holes are used as proxies for what would happen inside rotating black holes, which are probably the norm. Hintz argues that smooth, rotating black holes, called Kerr-Newman-de Sitter black holes, would behave the same way.

"That is upsetting, the idea that you could set out with an electrically charged star that undergoes collapse to a black hole, and then Alice travels inside this black hole and if the black hole parameters are sufficiently extremal, it could be that she can just cross the Cauchy horizon, survives that and reaches a region of the universe where knowing the complete initial state of the star, she will not be able to say what is going to happen," Hintz said. "It is no longer uniquely determined by full knowledge of the initial conditions. That is why it's very troublesome."

He discovered these types of black holes by teaming up with Cardoso and his colleagues, who calculated how a black hole rings when struck by gravitational waves, and which of its tones and overtones lasted the longest. In some cases, even the longest surviving frequency decayed fast enough to prevent the amplification from turning the Cauchy horizon into a dead zone.

Hintz's paper has already sparked other papers, one of which purports to show that most well-behaved black holes will not violate determinism. But Hintz insists that one instance of violation is one too many.

"People had been complacent for some 20 years, since the mid '90s, that strong cosmological censorship is always verified," he said. "We challenge that point of view."

Research paper


Related Links
University of California - Berkeley
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
No Relation Between a Supermassive Black Hole and Its Host Galaxy
Tokyo, Japan (SPX) Feb 21, 2018
Using the Atacama Large Millimeter/submillimeter Array (ALMA) to observe an active galaxy with a strong ionized gas outflow from the galactic center, a team led by Dr. Yoshiki Toba of the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA, Taiwan) has obtained a result making astronomers even more puzzled - the team clearly detected carbon monoxide (CO) gas that is associated with the galactic disk, yet they have also found that the CO gas which settles in the galaxy is not affected by the s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Ensuring fresh air for all

Japanese, US astronauts end spacewalk to fix robotic arm

Trump's Privatized ISS 'Not Impossible,' but Would Require 'Renegotiation'

Russian Resupply Ship Delivers Three Tons of Cargo

TIME AND SPACE
140 successful tests and several "firsts" for Vinci, the engine for Ariane 6

Russia launches cargo spacecraft after aborted liftoff

Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

TIME AND SPACE
Mars Rover Opportunity Reaches 5000 Sols On Mars

Oppy Takes A Selfie To Mark Sol 5000

Opportunity Continues to Benefit from Dust Cleaning of the Solar Panels

Leaky Atmosphere Linked To Lightweight Planet

TIME AND SPACE
Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

TIME AND SPACE
Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Iridium Certus broadband readies for DOD wsers with COMSAT

Airbus and human spaceflight: from Spacelab to Orion

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

TIME AND SPACE
A new way of generating ultra-short bursts of light

Tricking photons leads to first-of-its-kind laser breakthrough

Why bees soared and slime flopped as inspirations for systems engineering

Friction found where there should be none: In superfluids near absolute zero

TIME AND SPACE
NASA's Transiting Exoplanet Survey Satellite arrives at KSC for launch

Humans will actually react pretty well to news of alien life

Asteroid 'time capsules' may help explain how life started on Earth

Deep-sea fish use hydrothermal vents to incubate eggs

TIME AND SPACE
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.