Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Solution-grown nanowires make the best lasers
by Staff Writers
Madison WI (SPX) Apr 15, 2015


Unsorted nanowire crystals immediately after production are shown. Image courtesy Song Jin, University of Wisconsin-Madison. For a larger version of this image please go here.

Take a material that is a focus of interest in the quest for advanced solar cells. Discover a "freshman chemistry level" technique for growing that material into high-efficiency, ultra-small lasers. The result, disclosed Monday, April 13 in Nature Materials, is a shortcut to lasers that are extremely efficient and able to create many colors of light.

That makes these tiny lasers suitable for miniature optoelectronics, computers and sensors.

"We are working with a class of fascinating materials called organic-inorganic hybrid perovskites that are the focus of attention right now for high-efficiency solar cells that can be made from solution processes," says Song Jin, a professor of chemistry at the University of Wisconsin-Madison.

"While most researchers make these perovskite compounds into thin films for the fabrication of solar cells, we have developed an extremely simple method to grow them into elongated crystals that make extremely promising lasers," Jin says. The tiny rectangular crystals grown in Jin's lab are about 10 to 100 millionths of a meter long by about 400 billionths of a meter (nanometers) across. Because their cross-section is measured in nanometers, these crystals are called nanowires.

The new growth technique skips the costly, complicated equipment needed to make conventional lasers, says Jin, an expert on crystal growth and nanomaterial synthesis.

Jin says the nanowires grow in about 20 hours once a glass plate coated with a solid reactant is submerged in a solution of the second reactant. "There's no heat, no vacuum, no special equipment needed," says Jin. "They grow in a beaker on the lab bench."

"The single-crystal perovskite nanowires grown from solutions at room temperature are high quality, almost free of defects, and they have the nice reflective parallel facets that a laser needs," Jin explains. "Most importantly, according to the conventional measures of lasing quality and efficiency, they are real standouts."

When tested in the lab of Jin's collaborator, Xiaoyang Zhu of Columbia University, the lasers were nearly 100 percent efficient. Essentially every photon absorbed produced a photon of laser light. "The advantage of these nanowire lasers is the much higher efficiency, by at least one order of magnitude, over existing ones," says Zhu.

Lasers are devices that make coherent, pure-color light when stimulated with energy. "Coherent" means the light waves are moving synchronously, with their high and low points occurring at the same place. Coherence and the single-wavelength, pure color give lasers their most valuable properties. Lasers are used everywhere from DVD players, optical communications and surgery to cutting metal.

Nanowire lasers have the potential to enhance efficiency and miniaturize devices, and could be used in devices that merge optical and electronic technology for computing, communication and sensors.

"These are simply the best nanowire lasers by all performance criteria," says Jin, "even when compared to materials grown in high temperature and high vacuum. Perovskites are intrinsically good materials for lasing, but when they are grown into high-quality crystals with the proper size and shape, they really shine."

What is also exciting is that simply tweaking the recipe for growing the nanowires could create a series of lasers that emit a specific wavelength of light in many areas of the visible spectrum.

Before these nanowire lasers can be used in practical applications, Jin says their chemical stability must be improved. Also important is finding a way to stimulate the laser with electricity rather than light, which was just demonstrated.

The collaborative research was funded by the U.S. Department of Energy Basic Energy Sciences program. Graduate student Yongping Fu designed, synthesized and characterized the perovskite nanowires in Jin's lab in Madison. Haiming Zhu, a postdoctoral researcher in Zhu's lab at Columbia, carried out the optical studies of those nanowires and established their remarkable lasing properties.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Wisconsin-Madison
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
The laser pulse that gets shorter all by itself
Vienna, Austria (SPX) Jan 29, 2015
In a marathon, everyone starts at roughly the same place at roughly the same time. But the faster runners will gradually increase their lead, and in the end, the distribution of runners on the street will be very broad. Something similar happens to a pulse of light sent through a medium. The pulse is a combination of different colours (or different wavelengths), and when they are sent thro ... read more


TECH SPACE
Will the moon's first inhabitants live in giant lava tubes?

Soft Landing on the Moon an Extraordinary Challenge

Stop blaming the moon

Extent of Moon's giant volcanic eruption is revealed

TECH SPACE
Team Returning Orbiter to Duty After Computer Swap

More evidence for groundwater on Mars

Scars on Mars from 2012 Rover Landing Fade - Usually

Bill Nye and others discussing taking humans to Mars by 2033

TECH SPACE
How To Train Your Astronauts

Air Scrubber Plus Brings Space Age Technology Down To Earth

NASA Announces New Partnerships with Industry for Deep-Space Skills

A Year in Space

TECH SPACE
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

TECH SPACE
Special 3-D delivery from space to Marshall Space Flight Center

NASA drives future discoveries with new ISS information system

Cosmonauts Take Tablet Computer Into Space

Russia announces plan to build new space station with NASA

TECH SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

THOR 7 encapsulation as next Ariane 5 campaigns proceeds

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

TECH SPACE
Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

TECH SPACE
Largest database of elastic properties accelerates material science

Raytheon expands radar production facility

Upgrade in works for Norway's counter-battery radar

Physicists create new molecule with record-setting dipole moment




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.