Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Slip sliding away: Graphene and diamonds prove a slippery combination
by Staff Writers
Lemont IL (SPX) Jun 17, 2015


From left, researchers Ani Sumant, Ali Erdemir, Subramanian Sankaranarayanan, Sanket Deshmukh, and Diana Berman combined diamond, graphene, and carbon to achieve superlubricity. Image courtesy Mark Lopez / Argonne National Laboratory. For a larger version of this image please go here.

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates the rare phenomenon of "superlubricity."

Led by nanoscientist Ani Sumant of Argonne's Center for Nanoscale Materials (CNM) and Argonne Distinguished Fellow Ali Erdemir of Argonne's Energy Systems Division, the five-person Argonne team combined diamond nanoparticles, small patches of graphene - a two-dimensional single-sheet form of pure carbon - and a diamond-like carbon material to create superlubricity, a highly-desirable property in which friction drops to near zero.

According to Erdemir, as the graphene patches and diamond particles rub up against a large diamond-like carbon surface, the graphene rolls itself around the diamond particle, creating something that looks like a ball bearing on the nanoscopic level. "The interaction between the graphene and the diamond-like carbon is essential for creating the 'superlubricity' effect," he said. "The two materials depend on each other."

At the atomic level, friction occurs when atoms in materials that slide against each other become "locked in state," which requires additional energy to overcome. "You can think of it as like trying to slide two egg cartons against each other bottom-to-bottom," said Diana Berman, a postdoctoral researcher at the CNM and an author of the study.

"There are times at which the positioning of the gaps between the eggs - or in our case, the atoms - causes an entanglement between the materials that prevents easy sliding."

By creating the graphene-encapsulated diamond ball bearings, or "scrolls", the team found a way to translate the nanoscale superlubricity into a macroscale phenomenon. Because the scrolls change their orientation during the sliding process, enough diamond particles and graphene patches prevent the two surfaces from becoming locked in state.

The team used large-scale atomistic computations on the Mira supercomputer at the Argonne Leadership Computing Facility to prove that the effect could be seen not merely at the nanoscale but also at the macroscale.

"A scroll can be manipulated and rotated much more easily than a simple sheet of graphene or graphite," Berman said.

However, the team was puzzled that while superlubricity was maintained in dry conditions, in a humid environment this was not the case. Because this behavior was counterintuitive, the team again turned to atomistic calculations. "We observed that the scroll formation was inhibited in the presence of a water layer, therefore causing higher friction," explained co-author Argonne computational nanoscientist Subramanian Sankaranarayanan.

While the field of tribology has long been concerned with ways to reduce friction - and thus the energy demands of different mechanical systems - superlubricity has been treated as a tough proposition. "Everyone would dream of being able to achieve superlubricity in a wide range of mechanical systems, but it's a very difficult goal to achieve," said Sanket Deshmukh, another CNM postdoctoral researcher on the study.

"The knowledge gained from this study," Sumant added, "will be crucial in finding ways to reduce friction in everything from engines or turbines to computer hard disks and microelectromechanical systems."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Argonne National Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Researchers design the most precise quantum thermometer to date
Barcelona, Spain (SPX) Jun 11, 2015
Researchers from the UAB and the University of Nottingham, in an article published in Physical Review Letters, have fixed the limits of thermometry, i.e., they have established the smallest possible fluctuation in temperature which can be measured. The researchers have studied the sensitivity of thermometers created with a handful of atoms, small enough to be capable of showing typical quantum-s ... read more


TIME AND SPACE
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

TIME AND SPACE
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

TIME AND SPACE
How to sail through space on sunbeams - solar satellite leads the way

Robotic Tunneler May Explore Icy Moons

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

TIME AND SPACE
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

TIME AND SPACE
Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

ISS Adjusts Orbit to Evade Space Junk

Space station back on track after mystery Soyuz glitch

TIME AND SPACE
Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

SpaceX achieves pad abort milestone approval for Commercial Crew

NASA issues RFP for New Class of Launch Services

TIME AND SPACE
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

TIME AND SPACE
Researchers develop ultra-tough fiber that imitates the structure of spider silk

Turning paper industry waste into chemicals

Radar system approved for allies

First US deep space weather satellite reaches final orbit




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.