Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE TRAVEL
How to sail through space on sunbeams - solar satellite leads the way
by Matteo Ceriotti for The Conversation
Melbourne, Australia (TC) Jun 16, 2015


The concept of solar sailing is very simple, almost romantic in a sense - and definitely appealing for space exploration. Why then has it not been more widely exploited since its first conception in the 1920s? There are a number of reasons, which are all related to engineering challenges.

A new kind of spacecraft that sails on sunlight has just been successfully deployed above Earth. The LightSail satellite yesterday overcame a series of glitches to unfurl its solar sails, a propulsion system that's entirely different to traditional rockets, thrusters or even solar panels.

The prototype craft, built by the US Planetary Society and funded by public donations, is testing the sail deployment mechanism. Another mission due to be launched next year will trial the full propulsion system. And it's not the first spacecraft to fly using solar sailing. That honour went to the Japanese craft Ikaros in 2010. But the growing interest in the technology creates some exciting possibilities for the future of space travel.

Solar sailing is the space equivalent of boat sailing. A boat is pushed along by the air particles that strike its sail when the wind blows. The idea behind solar sailing is the same except, instead of wind, particles of light emitted by the Sun drive the craft forward.

Light is made up of moving particles known as photons that can be reflected by a mirror. When this happens, the mirror experiences a pressure across its surface called solar radiation pressure. This pressure is very small, so you couldn't feel it just by holding up a normal mirror in sunlight while on Earth. But in the vaccuum of space it's enough to move a very light mirrored sail.

To understand why solar sailing is important, we need to go back to the emptiness of space. Propulsion is the ability to accelerate a vehicle. Vehicles on Earth accelerate by interacting with something around them. For example, a car accelerates by producing a force on the tarmac.

In space, however, there is no medium to interact with. This is where rocket propulsion comes in. By ejecting propellant in one direction, the rocket is pushed in the opposite direction. This is because of the scientific law (Newton's Third Law of Motion) that says every time an object exerts a force on another object it experiences an equal and opposite force.

The catch is the propellant on a spacecraft is limited, and once it is all used up, no further no acceleration is possible. Because of this, some distant targets in space are impossible to reach with pure rocketry. Solar sailing, instead, goes elegantly around this this problem by not requiring any propellant mass at all. It is like having a rocket that can thrust for an indefinite amount of time, for free.

The concept of solar sailing is very simple, almost romantic in a sense - and definitely appealing for space exploration. Why then has it not been more widely exploited since its first conception in the 1920s? There are a number of reasons, which are all related to engineering challenges.

The main one is the fact that the solar radiation pressure is very small (hence why you cannot feel any force if you hold a mirror up to the sun). This means solar sails have to be large in order to reflect more light but also lightweight so less force is needed to move them.

And in order to be safely launched, the sail must be folded away and then deployed in weightlessness. The main body of the LightSail craft containing the folded sail is approximately 30cm across at its widest point but the sail deploys with a total area of 32 m2. This deployment mechanism must be very reliable because if it fails, the whole mission is wasted (hence LightSail's practice launch).

Even with large and lightweight sails, the acceleration can still be small. A solar sail covering two tennis courts would experience a force equivalent to the weight of 1g on Earth. If a spacecraft has a mass of 30 kg, its acceleration will be just 0.0003 m/s2. This sounds extremely small for space standards: even a 1980 Fiat Panda does much better, at about 1 m/s2.

However, a solar sail can orbit the sun over and over, slowly but continuously accelerating (or braking) towards its target. This is why sails are suited for long, interplanetary trips in the solar system. But while the sail can theoretically accelerate forever, practically there are time constraints. Radiation, impacts with micrometeoroids and outgassing (the release of trapped gas from within electronic instruments) can damage the sail material, making it less reflective with time.

The advantage of projects such as LightSail, even though it is a small prototype device, are that they demonstrate the feasibility of the technology and create greater interest and enthusiasm in this mode of flights. LightSail shows that, even a hundred years after being first proposed, solar sailing is still a very popular idea - and scientists (such as ourselves at Space Glasgow) still consider it promising for space exploration.

The hope is that it will attract further substantial investment to the sector in order to develop the technologies required to make solar sailing the main propulsion system of future spacecraft. We are almost there!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Conversation
Space Tourism, Space Transport and Space Exploration News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SPACE TRAVEL
LightSail spreads its sails
Pasadena, Calif. (UPI) Jun 8, 2015
After a few setbacks and several anxious periods of radio silence, the Planetary Society's solar sailing space probe has deployed its giant, featherlight sails. The unfurled sails mark an initial success for what is to be a two-part experiment. Next year, Bill Nye's organization will launch another sail-powered CubeSat - this one set for a lengthier cruise. The current LightSail ... read more


SPACE TRAVEL
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

SPACE TRAVEL
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

SPACE TRAVEL
How to sail through space on sunbeams - solar satellite leads the way

Robotic Tunneler May Explore Icy Moons

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

SPACE TRAVEL
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

SPACE TRAVEL
Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

ISS Adjusts Orbit to Evade Space Junk

Space station back on track after mystery Soyuz glitch

SPACE TRAVEL
Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

SpaceX achieves pad abort milestone approval for Commercial Crew

NASA issues RFP for New Class of Launch Services

SPACE TRAVEL
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

SPACE TRAVEL
Researchers develop ultra-tough fiber that imitates the structure of spider silk

Turning paper industry waste into chemicals

Radar system approved for allies

First US deep space weather satellite reaches final orbit




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.