. 24/7 Space News .
TECH SPACE
Single-step hydrogen peroxide production could be cleaner, more efficient
by Staff Writers
Madison WI (SPX) May 30, 2016


Scientists first proposed a single-step procedure to synthesize hydrogen peroxide in 1914, combining pure hydrogen and oxygen gases over a material called a catalyst, which accelerates the chemical reaction by lowering the energy barriers preventing the components from combining, but doesn't itself become transformed.

Bottles of dilute hydrogen peroxide sit on shelves in medicine cabinets across the world, yet synthesizing the chemical at the large scale requires a surprisingly complicated process that is economically unfeasible for all but a few industrial facilities.

Chemists and engineers have long been working on simpler approaches. A significant challenge can be stabilizing hydrogen peroxide once it forms, because yields are limited by the molecule's propensity to break down over the same materials utilized for its synthesis.

Chemical and biological engineers at the University of Wisconsin-Madison have uncovered new insight into how the compound decomposes. This advance, published this spring in the journal Proceedings of the National Academy of Sciences, could inform efficient and cost-effective single-step strategies for producing hydrogen peroxide.

Consumers reach for highly watered-down hydrogen peroxide to clean out minor cuts and scrapes, but the chemical also could be useful for numerous industrial processes as different as making flexible foam seat cushions or precursor chemicals for flame retardants.

Even though most applications would only require dilute solutions of hydrogen peroxide, production methods rely on the few large facilities capable of synthesizing large volumes of highly concentrated chemicals. This necessitates transporting concentrated hydrogen peroxide solutions long distances to the end user, which comes with significant expense.

"A single-pot reaction would permit on-site production and make hydrogen peroxide an economically feasible oxidant for a number of chemical processes, in particular to replace more environmentally harmful oxidants such as chlorine," says Tony Plauck, a doctoral student in chemical and biological engineering at UW-Madison and first author of the study.

Scientists first proposed a single-step procedure to synthesize hydrogen peroxide in 1914, combining pure hydrogen and oxygen gases over a material called a catalyst, which accelerates the chemical reaction by lowering the energy barriers preventing the components from combining, but doesn't itself become transformed.

Unfortunately, as more and more of the final hydrogen peroxide product accumulates in the vessel containing the mixture, the catalyst can also facilitate a subsequent undesirable chemical reaction wherein hydrogen peroxide breaks down into oxygen gas and water in a process called decomposition.

"One of the biggest catalytic challenges is finding a material that can actively produce hydrogen peroxide, but also something inactive towards decomposing hydrogen peroxide, which is a very thermodynamically favorable reaction," says Plauck.

Some of the most widely studied materials for direct hydrogen peroxide synthesis are palladium-based catalysts. Many researchers investigate how hydrogen and oxygen come together and chemically react on regions of the catalyst's surface called active sites. But palladium can also catalyze the decomposition reaction, so the hydrogen peroxide produced under these conditions tends to rapidly break down.

"Typical palladium catalysts exist as tiny, highly dispersed palladium nanoparticles, which contain a variety of surface features that may vary in their ability to decompose hydrogen peroxide," says Plauck. "If we understand where and how hydrogen peroxide primarily decomposes, we can propose some design criteria for future iterations of palladium catalysts."

Plauck's advisors on the project, chemical and biological engineering professors Manos Mavrikakis and James Dumesic, are experts in both theoretical and experimental approaches in catalysis. Their expertise in the computational techniques - such as microkinetic modeling and density functional theory - enabled the researchers to describe the experimentally observed decomposition reaction with unprecedented accuracy and detail.

"Hydrogen peroxide is currently prepared by a highly polluting process," says Mavrikakis. "These insights open new avenues for the direct synthesis of a chemical that, among others, is needed in large volumes for the laundry and paper bleaching industry."

The researchers used computational modeling to investigate different surface features of palladium nanoparticles that may be responsible for hydrogen peroxide decomposition. Based on the theoretical models, they predicted experimentally observable parameters of the reaction, such as the rate of hydrogen peroxide decomposition. Then the researchers made those experimental measurements and revised various aspects of their models until the theoretical predictions agreed with the experiments.

Ultimately, their results suggested that multiple surface features of palladium nanoparticles can significantly contribute to the overall hydrogen peroxide decomposition activity of these catalysts. Furthermore, the models provided detailed insight into how the decomposition reaction might be suppressed on palladium.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Wisconsin-Madison
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Clue for efficient usage of low-cost nickel catalysts
Osaka, Japan (SPX) May 26, 2016
A group of researchers at Osaka University developed a method of the consecutive formation of bonds of two butadiene, alkyl groups, and benzene rings by using a cheap nickel catalyst. Using this technique, it has become possible to synthesize high-value terminal olefin by using cheap butadiene. Multicomponent reactions are methods which are superior in economy and efficiency to methods of ... read more


TECH SPACE
SwRI scientists discover fresh lunar craters

NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

TECH SPACE
Opportunity takes panorama; uses wheel to scuff soil

Are mystery Mars plumes caused by space weather?

Ancient tsunami evidence on Mars reveals life potential

Hubble Takes Mars Portrait Near Close Approach

TECH SPACE
Space travel now in a parachute soon available

Airbus Defence and Space starts Orion service module assembly

Interns Make Archived NASA Planetary Science Data More Accessible

Out of this world: 'Moon and Mars veggies' grow in Dutch greenhouse

TECH SPACE
China, U.S. hold first dialogue on outer space safety

Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

TECH SPACE
NASA to try again to inflate spare room in space

Temporary space station habitat fails to inflate

International Space Cooperation Strongest in Times of Political Crises

Alexander Gerst to be Space Station commander

TECH SPACE
Arianespace's Soyuz is approved for its early morning liftoff on May 24

Fregat is fueled in Arianespace's FCube facility for Soyuz Flight VS15

Pre-launch processing is underway with Indonesia's BRIsat for the next Arianespace heavy-lift flight

Russia Spent $1.3Bln on Vostochny Cosmodrome So Far

TECH SPACE
Kepler-223 System Offers Clues to Planetary Migration

Star Has Four Mini-Neptunes Orbiting in Lock Step

Exoplanets' Orbits Point to Planetary Migration

Synchronized planets reveal clues to planet formation

TECH SPACE
Clue for efficient usage of low-cost nickel catalysts

India's Indigenous IT: New Supercomputer to be Built in 2017

How the giant magnetoelectric effect occurs in bismuth ferrite

Rice de-icer gains anti-icing properties









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.