. 24/7 Space News .
ENERGY TECH
Simple mathematical formula models lithium-ion battery aging
by Staff Writers
University Park PA (SPX) Nov 04, 2015


File image.

Hybrid electric vehicles, cell phones, digital cameras, and the Mars Curiosity rover are just a few of the many devices that use rechargeable lithium-ion batteries. Now a team of Penn State researchers has a simple mathematical formula to predict what factors most influence lithium-ion battery aging.

Lithium-ion batteries function by moving lithium ions from the negative electrode to the positive electrode and in the opposite direction when the battery charges. How often and exactly how that battery is used determines the length of a battery's life. Complex models that predict battery aging exist and are used for battery design.

However, faster, simpler models are needed to understand the most important factors that influence aging so that battery management systems in hybrid electric vehicles, for example, can better control lithium-ion batteries.

"We started out by making models specifically for Volvo's batteries that were tuned to their specific chemistry and showed that the models matched experimentally," said Christopher Rahn, professor of mechanical engineering, Penn State. "We then focused on simplifying the aging models. Now, we have the ultimate simplified aging model down to a formula."

The researchers report their work in the Journal of Power Sources.

According to Rahn, a battery ages, or degrades, whether it is sitting on a shelf or used. The main cause of lithium-ion battery aging is the continuous formation of the solid electrolyte interphase (SEI) layer in the battery. The SEI layer must form for the battery to work because it controls the amount of chemical reactions that occur in the battery.

As the battery is continually used, however, small-scale side reactions build up at the SEI layer, which decreases battery capacity - how much of a charge the battery can hold. Models allow researchers to understand how different factors affect this degradation process so that longer-lasting, more cost-efficient batteries can be made.

Hybrid electric vehicles combine the efficiency of electric vehicles with the power and longevity of gasoline-powered vehicles because they have both a gasoline-fueled conventional internal combustion engine and an electric motor powered by batteries. The electric motor uses regenerative brakes, which take the energy that was moving the car forward and convert it to mechanical energy, putting the electric motor into reverse and slowing down the car.

The electric motor acts as a generator and takes the electricity that is generated to store in batteries for future use. This is in contrast to conventional braking systems in which braking energy is wasted when friction converts the energy into heat.

According to the researchers, this new simple aging formula takes into account only the factors shown to most influence lithium-ion battery aging by affecting growth of the SEI layer, which include state of charge, how often the battery charges/discharges completely, operating temperature, and current.

"Car companies can use this formula to quantify which factors are contributing the most in aging and focus more on them and less on all of the other factors that don't play as much of a role," added Tanvir Tanim, graduate student in mechanical engineering, Penn State.

As part of the study, Tanim and Rahn compared the accuracy of their formula to that of more complex models using commercially available batteries. They found that their simple formula works just as well.

"Whenever you simplify a model, there are some things lost," said Rahn. "We have complicated models because they are very accurate. As you simplify, you have to justify every assumption that you make. I wasn't sure we could simplify the model down to a formula. It's pretty amazing to explicitly see how things depend on one another."

Rahn and Tanim have already seen the benefits of having a simple formula to model battery aging by using it to show that increasing the temperature of lithium-ion batteries in hybrid electric vehicles extends the life of the battery, which is contrary to what most researchers think. This effect was something that Volvo had previously seen with their batteries, and using this aging formula, Rahn and Tanim could explain why.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Penn State
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Lighter, long-lasting batteries made from silicon
Waterloo, Canada (SPX) Oct 28, 2015
Substantially smaller and longer-lasting batteries for everything from portable electronic devices to electric cars could be come a reality thanks to an innovative technology developed by University of Waterloo researchers. Zhongwei Chen, a chemical engineering professor at Waterloo, and a team of graduate students have created a low-cost battery using silicon that boosts the performance a ... read more


ENERGY TECH
All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Study reveals origin of organic matter in Apollo lunar samples

Russia touts plan to land a man on the Moon by 2029

ENERGY TECH
Signs of Acid Fog Found on Mars

NASA Chief: We're Closer to Sending Humans on Mars Than Ever Before

Rewrite of Onboard Memory Planned for NASA Mars Orbiter

Martian skywatchers provide insight on atmosphere, protect orbiting hardware

ENERGY TECH
Faster optimization

Sally Ride Science Launches at UC San Diego

Charles Elachi to retire as JPL Director

From science fiction to reality - sonic tractor beam invented

ENERGY TECH
Declaration approved to promote Asia Pacific space cooperation

China's first moon rover sets record for longest stay

China to set up civil satellite systems by 2020

The Last Tiangong

ENERGY TECH
Space station marks 15 years inhabited by astronauts

Space Station Investigation Goes With the Flow

NASA astronauts get workout in marathon spacewalk

Between the Ears: International Space Station Examines the Human Brain

ENERGY TECH
Russia signs contract with Eutelsat to launch satellites through 2023

ULA launches GPS IIF-11 satellite for US Air Force

International Launch Services Announces Multi-Launch Agreement With Eutelsat

GSAT-15 begins the payload integration process for Arianespace's next Ariane 5 mission

ENERGY TECH
Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

Scientists simulate 3-D exotic clouds on an exoplanet

Spirals in dust around young stars may betray presence of massive planets

ENERGY TECH
Holograms go mainstream, with future full of possibility

New HP Enterprise sees cloud ties with Amazon, others

U.S. Air Force awards Southwest Research Institute development contract

New System Giving SMAP Scientists the Speed They Need









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.