. 24/7 Space News .
STELLAR CHEMISTRY
Signs of Second Largest Black Hole in the Milky Way
by Staff Writers
Tokyo, Japan (SPX) Jan 19, 2016


Artist's impression of the clouds scattered by an intermediate mass black hole. For a larger version of this image please go here.

Astronomers using the Nobeyama 45-m Radio Telescope have detected signs of an invisible black hole with a mass of 100 thousand times the mass of the Sun around the center of the Milky Way. The team assumes that this possible "intermediate mass" black hole is a key to understanding the birth of the supermassive black holes located in the centers of galaxies.

A team of astronomers led by Tomoharu Oka, a professor at Keio University in Japan, has found an enigmatic gas cloud, called CO-0.40-0.22, only 200 light years away from the center of the Milky Way. What makes CO-0.40-0.22 unusual is its surprisingly wide velocity dispersion: the cloud contains gas with a very wide range of speeds.

The team found this mysterious feature with two radio telescopes, the Nobeyama 45-m Telescope in Japan and the ASTE Telescope in Chile, both operated by the National Astronomical Observatory of Japan.

To investigate the detailed structure, the team observed CO-0.40-0.22 with the Nobeyama 45-m Telescope again to obtain 21 emission lines from 18 molecules. The results show that the cloud has an elliptical shape and consists of two components: a compact but low density component with a very wide velocity dispersion of 100 km/s, and a dense component extending 10 light years with a narrow velocity dispersion.

What makes this velocity dispersion so wide? There are no holes inside of the cloud. Also, X-ray and infrared observations did not find any compact objects. These features indicate that the velocity dispersion is not caused by a local energy input, such as supernova explosions.

The team performed a simple simulation of gas clouds flung by a strong gravity source. In the simulation, the gas clouds are first attracted by the source and their speeds increase as they approach it, reaching maximum at the closest point to the object. After that the clouds continue past the object and their speeds decrease. The team found that a model using a gravity source with 100 thousand times the mass of the Sun inside an area with a radius of 0.3 light years provided the best fit to the observed data.

"Considering the fact that no compact objects are seen in X-ray or infrared observations," Oka, the lead author of the paper that appeared in the Astrophysical Journal Letters, explains "as far as we know, the best candidate for the compact massive object is a black hole."

If that is the case, this is the first detection of an intermediate mass black hole. Astronomers already know about two sizes of black holes: stellar-mass black holes, formed after the gigantic explosions of very massive stars; and supermassive black holes (SMBH) often found at the centers of galaxies. The mass of SMBH ranges from several million to billions of times the mass of the Sun. A number of SMBHs have been found, but no one knows how the SMBHs are formed.

One idea is that they are formed from mergers of many intermediate mass black holes. But this raises a problem because so far no firm observational evidence for intermediate mass black holes has been found. If the cloud CO-0.40-0.22, located only 200 light years away from Sgr A* (the 4 million solar mass SMBH at the center of the Milky Way), contains an intermediate mass black hole, it might support the intermediate mass black hole merger scenario of SMBH evolution.

These results open a new way to search for black holes with radio telescopes. Recent observations have revealed that there are a number of wide-velocity-dispersion compact clouds similar to CO-0.40-0.22. The team proposes that some of those clouds might contain black holes. A study suggested that there are 100 million black holes in the Milky Way Galaxy, but X-ray observations have only found dozens so far. Most of the black holes may be "dark" and very difficult to see directly at any wavelength.

"Investigations of gas motion with radio telescopes may provide a complementary way to search for dark black holes" said Oka. "The on-going wide area survey observations of the Milky Way with the Nobeyama 45-m Telescope and high-resolution observations of nearby galaxies using the Atacama Large Millimeter/submillimeter Array (ALMA) have the potential to increase the number of black hole candidates dramatically."

The observation results were published as Oka et al. "Signature of an Intermediate-Mass Black Hole in the Central Molecular Zone of Our Galaxy" in the Astrophysical Journal Letters issued on January 1, 2016. The research team members are Tomoharu Oka, Reiko Mizuno, Kodai Miura, Shunya Takekawa, all at Keio University.

This research is supported by the Japanese Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (C) No. 24540236.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Astronomical Observatory of Japan.
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
First global age map of the Milky Way
Heidelberg, Germany (SPX) Jan 12, 2016
Using completely new ways of deducing the ages of so-called red giant stars from observational data, astronomers have created the first large-scale map that shows stellar ages in the Milky Way. Determining the ages of nearly 100 000 red giant stars, at distances of up to 50 000 light-years from the galactic center, the astronomers, led by Melissa Ness and Marie Martig of the Max Planck Ins ... read more


STELLAR CHEMISTRY
Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

STELLAR CHEMISTRY
Money troubles may delay Europe-Russia Mars mission

Opportunity Welcomes Winter Solstice

A Starburst Spider On Mars

Rover Rounds Martian Dune to Get to the Other Side

STELLAR CHEMISTRY
NASA's Scott Kelly unveils first flower grown in space: an orange zinnia

Newcomer Sierra Nevada to supply ISS alongside SpaceX, Orbital: NASA

NASA completes Orion parachute development tests

How mold on Space Station flowers is helping get us to Mars

STELLAR CHEMISTRY
China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

China plans 20 launches in 2016

STELLAR CHEMISTRY
Water in US astronaut's helmet cuts short Briton's 1st spacewalk

Roscosmos prepares to launch first manned Soyuz MS

Long haul, night repairs for British, US spacewalkers

NASA, Texas Instruments Launch mISSion imaginaTIon

STELLAR CHEMISTRY
Building a robust commercial market in low earth orbit

NASA awards ISS cargo transport contracts

SpaceX fails to stick ocean landing after satellite launch

SpaceX will try to land its reusable rocket on an ocean dock

STELLAR CHEMISTRY
Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

STELLAR CHEMISTRY
New twists in the diffraction of intense laser light

A new way to print 3-D metals and alloys

Space Protection - A Financial Primer

Nano-shells deliver molecules that tell bone to repair itself









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.