. 24/7 Space News .
SHAKE AND BLOW
Seafloor sediments appear to enhance Earthquake and Tsunami danger in Pacific Northwest
by Staff Writers
Austin TX (SPX) Dec 05, 2017


The Cascadia Subduction Zone is capable of generating powerful earthquakes. The study found compact sediments along the coast of Washington and northern Oregon, a result that suggests that the area could be more prone to producing larger quakes than subduction zone areas farther south with less compact sediments.

The Cascadia Subduction Zone off the coast of the Pacific Northwest has all the ingredients for making powerful earthquakes - and according to the geological record, the region is due for its next "big one."

A new study led by The University of Texas at Austin has found that the occurrence of these big, destructive quakes and associated devastating tsunamis may be linked to compact sediments along large portions of the subduction zone. In particular, they found that big, destructive quakes may have a better chance of occurring offshore of Washington and northern Oregon than farther south along the subduction zone - although any large quake would impact the surrounding area.

"We observed very compact sediments offshore of Washington and northern Oregon that could support earthquake rupture over a long distance and close to the trench, which increases both earthquake and tsunami hazards," said lead author Shuoshuo Han, a postdoctoral fellow at the University of Texas Institute for Geophysics (UTIG). UTIG is a research unit of the Jackson School of Geosciences.

The findings, published in Nature Geoscience on Nov. 20, are important for understanding factors that influence earthquake and tsunami generation in Cascadia and at other subduction zones around the world. Researchers from Columbia University and Penn State University also contributed to the study.

Subduction zones are areas where one tectonic plate dives or "subducts" beneath another plate. The world's most powerful earthquakes are produced at the interface between the two plates. At certain subduction zones, such as those in Cascadia, Sumatra and eastern Alaska, a thick sediment layer overlies the subducting oceanic plate. Some of the sediment is scraped off during subduction and piled up on the top plate, forming a thick wedge of material, while the rest of the sediment travels down with the bottom plate.

How the stress is built up and released at the plate interface is greatly influenced by the degree of compaction of both the sediment wedge and the sediment between the plates. To understand sediment compaction along Cascadia, Han and her collaborators conducted a seismic survey off the coast of Washington and Oregon that allowed the researchers to see up to four miles of sediment layers overlaying the subduction zone. This was accomplished by the using nearly five-mile-long seismic streamers, a scientific tool used to image the seafloor using soundwaves.

"These kinds of long-streamer marine seismic studies provide the best tools available to the science community to efficiently probe subduction zones in high resolution," said co-author Suzanne Carbotte, a research professor at Columbia University.

Combining the seismic data with measurements from sediment samples previously retrieved from this region through ocean drilling, they found that while the thickness of the incoming sediment is similar offshore of Washington and Oregon, the compaction is very different.

Off the coast of Washington and northern Oregon, where almost all of the sediments glom on to the top plate and are incorporated into the wedge, the sediments were tightly packed together without much water in the pore space between the sediment grains - an arrangement that can make the plates more prone to sticking to each other and building up high stress that can be released as a large earthquake.

In turn, the compacted sediments could boost the ability of large earthquakes to trigger large tsunamis because the sediments are able to stick and move together during earthquakes. This can boost their ability to move massive amounts of overlying seawater.

"That combination of both storing more stress and the ability for it to propagate farther is important for both generating large earthquakes and for propagating to very shallow depths," said Nathan Bangs, a senior research scientist at UTIG and study co-author.

The propagation of earthquakes into shallow depths is what causes large tsunamis like the one that followed the Magnitude 9.0 earthquake that struck Tohoku, Japan in 2011.

In contrast, off the coast of central Oregon, the thick layer of subducting sediments are less compact, with water in the pore space between the grains. This arrangement prevents the plates from sticking as much, and allows them to rupture with less stress accumulated-thereby generating smaller earthquakes.

The Cascadia Subduction Zone generates a large earthquake roughly every 200 to 530 years. And with the last large earthquake occurring in 1700, scientists are expecting a large quake to occur in the future, although it's impossible to pinpoint the timing exactly. The research findings can help scientists understand more about the features that make some areas of subduction zones better earthquake incubators than others.

"The results are consistent with existing constraints on earthquake behavior, offer an explanation for differences in structural style along the margin, and may provide clues about the propensity for shallow earthquake slip in different regions," said co-author Demian Saffer, a Penn State University professor.

Research paper

SHAKE AND BLOW
Tsunami reveals human noise pollution in Hawaiian waters
Durham NC (SPX) Nov 02, 2017
A tsunami that struck Hawaii in 2011 and caused a temporary halt to boat traffic has provided scientists a rare glimpse into what the bays might sound like without human activities. The tsunami, triggered by the same earthquake that caused the Fukushima nuclear disaster in Japan, reached waters along the island of Hawaii's Kona Coast while a Duke University-lead team was recording underwat ... read more

Related Links
University of Texas at Austin
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Does the Outer Space Treaty at 50 need a rethink

NASA to send critical science, instruments to Space Station

New motion sensors major step towards cheaper wearable technology

Can a magnetic sail slow down an interstellar probe

SHAKE AND BLOW
Russia to build launch pad for super heavy-lift carrier by 2028

Flat-Earther's self-launch plan hits a snag

Mechanisms are critical to all space vehicles

SSTL ships CARBONITE-2 and Telesat's LEO-1 for PSLV launch

SHAKE AND BLOW
Gadgets for Mars

Ice shapes the landslide landscape on Mars

Winds Blow Dust off the Solar Panels Improving Energy Levels

Previous evidence of water on Mars now identified as grainflows

SHAKE AND BLOW
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

SHAKE AND BLOW
Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

Need to double number of operational satellites: ISRO chief

Space Launch plans UK industry tour

SHAKE AND BLOW
Device could reduce the carbon footprint of ethylene production

Researchers inadvertently boost surface area of nickel nanoparticles for catalysis

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

Study shows how to get sprayed metal coatings to stick

SHAKE AND BLOW
Scallops have 200 eyes, which function like a telescope: study

Researchers prolong life by curbing common enzyme

Mexico's Yucatan Peninsula reveals a cryptic methane-fueled ecosystem in flooded caves

First known interstellar visitor is an 'oddball'

SHAKE AND BLOW
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.