Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Sea urchin protein provides insights into self-assembly of skeletal structures
by Staff Writers
New York NY (SPX) Jun 20, 2017


This is a scanning electron microscopy image of a calcite crystal generated in the presence of the sea urchin protein rSpSM50 on a silicon wafer showing organized nanotexturing on exposed surfaces. Credit NYU Dentistry: Evans

Calcium carbonate, or CaCO3, comprises more than 4% of the earth's crust. Its most common natural forms are chalk, limestone, and marble, produced by the sedimentation of the shells of small fossilized snails, shellfish, and coral over millions of years.

New York University College of Dentistry (NYU Dentistry) researchers are studying how nature creates three-dimensional CaCO3 inorganic/organic based materials to form seashells, invertebrate exoskeletons, and vertebrate bone, dentine, and enamel.

John Evans, DMD, PhD, a professor in NYU Dentistry's Department of Basic Science and Craniofacial Biology, oversees a research group focusing on the study of proteins that modulate the formation of biominerals, which in turn create new composite materials with unique properties, such as increased fracture and puncture resistances.

In a paper recently published in Biochemistry, Gaurav Jain, PhD, a postdoc in Dr. Evans's lab and coauthor of "A model sea urchin spicule matrix protein, rSpSM50, is a hydrogelator that modifies and organizes the mineralization process," looked at how the CaCO3 matrix is organized inside a sea urchin spicule. At first, these spicules are nothing more than chalk, but when combined with sea urchin proteins, they form tiny stacks of "bricks," creating a structure that provides some of the toughest defense against predators and harsh ocean conditions.

"Primary mesenchyme cells (PMCs) inside a sea urchin embryo deposits amorphous CaCO3 within the matrix of spicule proteins where these bricks are shaped into layers of calcium carbonate crystals," notes Dr. Jain. "However, the functional and assembly capabilities of individual spicule matrix proteins aren't clear. We are currently investigating one such protein found inside the spicules of a sea urchin embryo to understand what makes these proteins such efficient 'brick organizers.'"

The researchers looked at SM50, one of the most abundant and well-studied proteins found inside these spicules. They found that a recombinant version of the SM50 protein, rSpSM50, is a highly aggregation-prone protein that forms tiny jelly-like structures called hydrogels in solution. These 'jellies' capture tiny mineral nanoparticles and organize them into crystalline 'bricks.' Moreover, rSpSM50 causes surface texturing and forms randomly interconnected porous channels within these crystals.

"What is unique about rSpSM50 is that it fosters the formation and organization of two different forms of calcium carbonate - calcite and vaterite within the 'jellies' themselves, inducing fracture resistance to the overall structure," said Dr. Jain.

Researchers used a specific type of titration method that revealed the details about very early events in the spicule formation.

"rSpSM50 turns out to be a really important piece of the puzzle, as it slows the formation kinetics but neither stabilizes nor destabilizes the extremely tiny mineral particles that ultimately form these bricks," says coauthor Martin Pendola, PhD.

CaCo3 has always been a man's favorite construction material to make primitive tools, musical instruments, and craftware since the beginning of civilization. In modern times, CaCO3 is the most widely used mineral in the paper, plastics, paints and coatings industries both as a filler - and due to its special white color - as a coating pigment.

"Our current research, funded by U.S. Department of Energy, will enable scientists to better understand the mineralization and assembly process crucial to spicule formation in sea urchin," said Dr. Evans.

"Our ultimate goal is to determine the molecular properties of these proteins that allow matrices to assemble, mineralize, and participate in the formation of naturally occurring organic/inorganic skeletal structures. The hope is that the comprehensive understanding of spicule proteins will enable the development of tunable fracture resistant materials that one day will find its use in developing lightweight 'armor' and 'sturdier' dental composites."

TECH SPACE
New waterproofing and antifouling materials developed by Swansea Scientists
Swansea UK (SPX) Jun 16, 2017
'Green' project led by Swansea scientists could replace more expensive and hazardous materials used for waterproofing and antifouling/fogging. New materials have been developed by scientists in the Energy Safety Research Institute (ESRI) at Swansea University which is nontoxic, economical and shows promise to replace more expensive and hazardous materials used for waterproofing and antifou ... read more

Related Links
New York University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
To Be or Not to Be: At 20 ISS Goes Strong, But for How Long

Pence hails new NASA astronauts as 'best of us'

Additional Astronaut on the Space Station Means Dozens of New Team Members on the Ground

Roscosmos Says Cooperation With NASA Unaffected by 'Political Outbursts'

TECH SPACE
Proton returns to flight with US satellite after 12 month hiatus

NASA awards Universal Stage Adapter contract for SLS

Russian rocket returns to service with launch of US satellite

Ariane 5 launches its heaviest telecom payload

TECH SPACE
Walkabout Above 'Perseverance Valley'

Hot rocks, not warm atmosphere, led to relatively recent water-carved valleys on Mars

Opportunity Surveying the spillway into Perseverance Valley

Window to a watery past on Mars

TECH SPACE
Moon or Mars - humanity's next stop

China's space station to help maintain co-orbital telescope

Seeds of 5,000-year-old tree bud after returning from space

What China's space ambitions have to do with politics

TECH SPACE
Jumpstart goes into alliance with major aerospace and defence group ADS

Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

TECH SPACE
Oyster shells inspire new method to make superstrong, flexible polymers

Study explains how jewel scarab beetles appear golden

New technique enables 3-D printing with paste of silicone particles in water

Magnets, all the way down

TECH SPACE
Astronomers Explain Formation of Seven Exoplanets Around TRAPPIST-1

OU astrophysicist identifies composition of Earth-size planets in TRAPPIST-1 system

Flares May Threaten Planet Habitability Near Red Dwarfs

The Art of Exoplanets

TECH SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement