Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Scientists measure speedy electrons in silicon
by Staff Writers
Berkeley CA (SPX) Dec 15, 2014


By probing a silicon crystal with attosecond laser pulses, UC Berkeley scientists got a series of snapshots of the electron energies in the semiconductor. From back to front, the atom-bound electrons have a very narrow, sharply peaked range of energies (red), but once the electrons jump to the conduction band, the energy distribution spreads out (orange and yellow). The jump takes only 450 attoseconds. Image courtesy Stephen Leone and Daniel Neumark, Attosecond Physics Laboratory, UC Berkeley.

The entire semiconductor industry, not to mention Silicon Valley, is built on the propensity of electrons in silicon to get kicked out of their atomic shells and become free. These mobile electrons are routed and switched though transistors, carrying the digital information that characterizes our age.

An international team of physicists and chemists based at the University of California, Berkeley, has for the first time taken snapshots of this ephemeral event using attosecond pulses of soft x-ray light lasting only a few billionths of a billionth of a second.

While earlier femtosecond lasers were unable to resolve the jump from the valence shell of the silicon atom across the band-gap into the conduction electron region, the new experiments now show that this transition takes less than 450 attoseconds.

"Though this excitation step is too fast for traditional experiments, our novel technique allowed us to record individual snapshots that can be composed into a 'movie' revealing the timing sequence of the process," explains Stephen Leone, UC Berkeley professor of chemistry and physics.

Leone, his UC Berkeley colleagues and collaborators from the Ludwig-Maximilians Universitat in Munich, Germany, the University of Tsukuba, Japan, and the Molecular Foundry at the Department of Energy's Lawrence Berkeley National Laboratory report their achievement in the Dec. 12 issue of the journal Science.

Century-old discovery observed
Leone notes that more than a century has elapsed since the discovery that light can make certain materials conductive. The first movie of this transition follows the excitation of electrons across the band-gap in silicon with the help of attosecond extreme ultraviolet (XUV) spectroscopy, developed in the Attosecond Physics Laboratory run by Leone and Daniel Neumark, UC Berkeley professor of chemistry.

In semiconducting materials, electrons are initially localized around the individual atoms forming the crystal and thus cannot move or contribute to electrical currents. When light hits these materials or a voltage is applied, some of the electrons absorb energy and get excited into mobile states in which the electrons can move through the material. The localized electrons take a "quantum jump" into the conduction band, tunneling through the barrier that normally keeps them bound to atoms.

These mobile electrons make the semiconductor material conductive so that an applied voltage results in a flowing current. This behavior allows engineers to make silicon switches, known as transistors, which have become the basis of all digital electronics.

The researchers used attosecond XUV spectroscopy like an attosecond stop watch to follow the electron's transition. They exposed a silicon crystal to ultrashort flashes of visible light emitted by a laser source. The subsequent illumination with x-ray-pulses of only a few tens of attoseconds (10-18 seconds) in duration allowed the researchers to take snapshots of the evolution of the excitation process triggered by the laser pulses.

Unambiguous interpretation of the experimental data was facilitated by a series of supercomputer simulations carried out by researchers at the University of Tsukuba and the Molecular Foundry. The simulations modeled both the excitation process and the subsequent interaction of x-ray pulses with the silicon crystal.

Electron jump makes atoms rebound
The excitation of a semiconductor with light is traditionally conceived as a process involving two distinct events. First, the electrons absorb light and get excited. Afterwards, the lattice, composed of the individual atoms in the crystal, rearranges in response to this redistribution of electrons, turning part of the absorbed energy into heat carried by vibrational waves called phonons.

In analyzing their data, the team found clear indications that this hypothesis is true. They showed that initially, only the electrons react to the impinging light while the atomic lattice remains unaffected. Long after the excitation laser pulse has left the sample - some 60 femtoseconds later - they observed the onset of a collective movement of the atoms, that is, phonons. This is near the 64 femtosecond period of the fastest lattice vibrations.

Based on current theory, the researchers calculated that the lattice spacing rebounded about 6 picometers (10-12 meters) as a result of the electron jump, consistent with other estimates.

"These results represent a clean example of attosecond science applied to a complex and fundamentally important system," Neumark says.

The unprecedented temporal resolution of this attosecond technology will allow scientists to resolve extremely brief electronic processes in solids that to date seemed too fast to be approached experimentally, says Martin Schultze, who was a guest researcher in Leone's lab last year, visiting from the Ludwig-Maximilians Universitat Munchen.

This poses new challenges to the theory of light-matter interactions, including the excitation step, its timescale and the interpretation of experimental x-ray spectra.

"But here is also an advantage," Schultze adds. "With our ultrashort excitation and probing pulses, the atoms in the crystal can be considered frozen during the interaction. That eases the theoretical treatment a lot."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Berkeley
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Finding the simple patterns in a complex world
Canberra, Canberra (SPX) Dec 09, 2014
An ANU mathematician has developed a new way to uncover simple patterns that might underlie apparently complex systems, such as clouds, cracks in materials or the movement of the stockmarket. The method, named fractal Fourier analysis, is based on new branch of mathematics called fractal geometry. The method could help scientists better understand the complicated signals that the bod ... read more


TIME AND SPACE
UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

Why we should mine the moon

Young Volcanoes on the Moon

TIME AND SPACE
Signs of Ancient Mars Lakes and Quakes Seen in New Map

Opportunity In No-Flash Mode: Kludge Ready To Radiate

Flash-Memory Reformat Planned

Mars is a Four-Letter Word

TIME AND SPACE
Sarah Brightman to Begin Training in January for Flight to ISS

NASA parodies 'All about that Bass' to promote space exploration

Estimated Cost of 3 NASA Exploration Programs to Exceed $21 Billion: GAO

NASA Exploration Programs Face Cost, Technical, Scheduling Issues

TIME AND SPACE
Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

China's Long March puts satellite in orbit on 200th launch

Service module of China's returned lunar orbiter reaches L2 point

TIME AND SPACE
Boeing Covers Groundwork in Second Milestone For Commercial Crew

Orbital says it will complete ISS deliveries by end of 2016

OPALS: Light Beams Let Data Rates Soar

ATV views Space Station as never before

TIME AND SPACE
NASA, SpaceX reschedule next week's ISS resupply launch

Lockheed Martin Wins Medium Lift RFP

Final payload integration begins for O3b Networks' four satellites

XCOR Presents New Platforms For Suborbital Science at AGU

TIME AND SPACE
Astronomers spot Pluto-size objects swarming about young sun

Observing Solar System Worlds as if They Were Distant Exoplanets

Finding infant earths and potential life just got easier

Queen's scientist leads study of 'Super-Earth'

TIME AND SPACE
Bioplastic -- greener than ever

China developing space-based 3D printing machine

Airbus Defence and Space signs contract for Microwave Sounder instruments

BAE Systems to produce prototype counter-radar system




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.