Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















ENERGY TECH
Scientists discover a molecular motor has a 'gear' for directional switching
by Staff Writers
Corvallis OR (SPX) Jan 06, 2017


The motor protein KlpA moves in one direction on a single cytoskeleton track and switches to the opposite direction between a pair of cytoskeleton tracks. Image courtesy Kuo-Fu Tseng and Oregon State University.

A new study offers a new understanding of the complex cellular machinery that animal and fungi cells use to ensure normal cell division, and scientists say it could one day lead to new treatment approaches for certain types of cancers.

The research revealed a totally unexpected behavior about a "motor" protein that functions as chromosomes are segregated during cell division. The findings were published in Nature Communications.

The work was led by Weihong Qiu, an assistant professor of physics in the College of Science at Oregon State University, in collaboration with researchers from Henan University in China and the Uniformed Services University of the Health Sciences in Maryland.

Motor proteins are tiny molecular machines that convert chemical energy into mechanical work. They are the miniature "vehicles" of a cell, and move on a network of tracks commonly referred to as the cytoskeleton.

They shuttle cellular cargos between locations and generate forces to position chromosomes. But in spite of intensive research efforts over many years, mechanisms underlying the actions of many motor proteins are still unclear.

In this study, researchers focused on a particular motor protein, called KlpA, and used a high-sensitivity light microscopy method to directly follow the movement of individual KlpA molecules on the cytoskeleton track. They discovered that KlpA is able to move in opposite directions - an unusual finding. KlpA-like motor proteins are thought to be exclusively one-way vehicles.

The researchers also discovered that KlpA contains a gear-like component that enables it to switch direction of movement. This allows it to localize to different regions inside the cell so it can help ensure that chromosomes are properly divided for normal cell division.

"In the past, KlpA-like motor proteins were thought to be largely redundant, and as a result they haven't been studied very much," Qiu said.

"It's becoming clear that KlpA-like motors in humans are crucial to cancer cell proliferation and survival. Our results help better understand other KlpA-like motor proteins including the ones from humans, which could eventually lead to novel approaches to cancer treatment."

Qiu and colleagues say they are excited about their future research, which may uncover the design principle at the atomic level that allows KlpA to move in opposite directions. And there may be other applications.

"KlpA is a fascinating motor protein because it is the first of its kind to demonstrate bidirectional movement," Qiu said.

"It provides a golden opportunity for us to learn from Mother Nature the rules that we can use to design motor protein-based transport devices. Hopefully in the near future, we could engineer motor protein-based robotics for drug delivery in a more precise and controllable manner."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.

.


Related Links
Oregon State University
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Rolling out an e-sticker revolution
Thuwal, Saudi Arabia (SPX) Jan 04, 2017
The healthcare industry forecasts that our wellbeing in the future will be monitored by wearable wirelessly networked sensors. Manufacturing such devices could become much easier with decal electronics. A KAUST-developed process prints these high-performance silicon-based computers on to soft, sticker-like surfaces that can be attached anywhere1. Fitting electronics on to the asymmetric co ... read more


ENERGY TECH
Tech show looks beyond 'smart,' to new 'realities'

'Passengers' and the real-life science of deep space travel

NASA Readies for Major Orion Milestones in 2017

India achieves advances multiple space systems in 2016

ENERGY TECH
Europe and Russia looking at Space Tug Project

Preparing to Plug Into NASA SLS Fuel Tank

New round of wind tunnel tests underway for bigger SLS version

United Launch Alliance launches EchoStar XIX satellite

ENERGY TECH
Odyssey recovering from precautionary pause in activity

Small Troughs Growing on Mars May Become 'Spiders'

All eyes on Trump over Mars

Opportunity performs several drives to ancient gully

ENERGY TECH
China Plans to Launch 1st Mars Probe by 2020 - State Council Information Office

China to expand int'l cooperation on space sciences

China sees rapid development of space science and technology

Chinese missile giant seeks 20% of a satellite market

ENERGY TECH
Airbus DS and Energia eye new medium-class satellite platform

OneWeb announces key funding form SoftBank Group and other investors

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

ENERGY TECH
Rice U probes ways to turn cement's weakness to strength

Au naturel catalyst mimics nature to break tenacious carbon-hydrogen bond

Scientists create tiny laser using silver nanoparticles

Divide and conquer pattern searching

ENERGY TECH
The blob can learn and teach

Searching a sea of 'noise' to find exoplanets - using only data as a guide

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Exciting new creatures discovered on ocean floor

ENERGY TECH
Exploring Pluto and the Wild Back Yonder

Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement