. 24/7 Space News .
TECTONICS
Scientists detect deep carbon emissions associated with continental rifting
by Staff Writers
Albuquerque NM (SPX) Jan 20, 2016


The research team from the UNM Department of Earth and Planetary Sciences included Master's student Nicole Thomas, Professor Tobias Fischer and Ph.D. student Hyunwoo Lee. Oldoinyo Lengai, a volcano located in northern Tanzania, looms in the background. Image courtesy University of New Mexico. For a larger version of this image please go here.

Scientists at the University of New Mexico conducted research to effectively study carbon emissions through fault systems in the East African Rift (EAR) in an effort to understand carbon emissions from the Earth's interior and how it affects the atmosphere.

Carbon dioxide (CO2) from Earth's interior is thought to be released into the atmosphere mostly via degassing from active volcanoes. CO2 can also escape along faults away from active volcanic centers. However, such tectonic degassing is poorly constrained, and to date has been largely unmeasured.

The research, funded by the National Science Foundation (NSF) Tectonics Program, is directed by UNM Professor Tobias Fischer and is part of a continued effort to better quantify global emissions of CO2 from the Earth's interior.

Led by UNM Ph. D. student Hyunwoo Lee, the lead author of the paper titled, Massive and prolonged deep carbon emissions associated with continental rifting published in Nature Geosciences, the scientists set out to measure diffuse CO2 flux from the Magadi-Natron basin in the East African Rift (EAR) between Kenya and Tanzania.

"CO2 is the main source of the greenhouse effect," said Lee. "Natural carbon emissions come from volcanoes and are derived from magma. Mostly, people have thought the major sources of magmatic emissions have come through active volcanic events. Our research is the first attempt to quantify magmatic CO2 gases from non-volcanic and continental rift regions."

The EAR is the world's largest active continental rift and is comprised through distinct western and eastern sectors. Several active volcanoes emit large volumes of CO2 including Nyiragongo in the Congo and Oldoinyo Lengai in Tanzania. Additionally, significant amounts of CO2 are stored in large anoxic lakes in this region.

"To measure diffuse CO2 flux, we used an EGM-4 CO2 gas analyzer with a cylindrical accumulation chamber" Lee said. "The gas samples were then diverted from the chamber into pre-evacuated glass vials in order to carry out gas chemistry and carbon isotope analyses in our laboratories at UNM."

Additional gas samples collected along fault zones in the Magadi-Natron basin showed an elevated CO2 flux and provided further evidence that faults act as permeable pathways facilitating the ascent of deeply-derived CO2. This particular study area represented a conservative 10 percent of the entire Natron-Magadi region.

The data from all samples were then compared to gas data from the active volcano Oldoinyo Lengai and found to have carbon isotope compositions that indicated a strong magmatic contribution to the observed CO2.

James Muirhead, a doctoral student at the University of Idaho, focused on the relationship between the structure of the faults and the gas they released, including what controls carbon dioxide flow from depth and what volumes of gas the faults release.

Combing the CO2 flux data and fault structures with carbon isotopic analyses, conducted at UNM's Center for Stable Isotopes (CSI), the research generated interesting data allowing the scientists to quantify the massive and prolonged deep carbon emissions through faults.

"We found that about 4 megatonnes per year of mantle-derived CO2 is released in the Magadi-Natron Basin, at the border between Kenya and Tanzania," Lee said. "Seismicity at depths of 15 to 30 kilometers detected during our project implies that extensional faults in this region may penetrate the lower crust. Thus, the ultimate source of the CO2 is the lower crust or the mantle, consistent with the carbon isotopes measured in the gas."

The findings suggest that CO2 is transferred from upper mantle or lower crustal magma bodies along these deep faults. Extrapolation of the measurements to the entire Eastern branch of the rift system implies a huge CO2 flux 71 megatonnes per year, comparable to emissions from the entire global mid-ocean ridge system of 53 to 97 megatonnes per year.

"It is often argued that large volcanic eruptions instantly transfer significant amounts of CO2 and other gases into the atmosphere where they affect the global climate over a few years," Fischer said. "On human time-scales, continental rifting is extremely slow at spreading rates of mm's per year but on geologic time-scales, rifting can be considered a catastrophic continental break-up event."

"Widespread continental rifting and super-continent breakup could produce massive, long-term CO2 emissions and contribute to prolonged greenhouse conditions like those of the Cretaceous," Lee added.

Large-scale rifting events could play a previously unrecognized role in heating up the atmosphere and perhaps ending global ice ages.

"It is important to note, however, even when including the newly quantified CO2 emissions from the EAR in the global CO2 budget, natural emissions are dwarfed by emissions from fossil fuel use which were 36 giga tons of CO2 in 2013," Fischer said. "This comparison shows that humanity is currently emitting the equivalent of 500 East African Rifts in CO2 to the atmosphere per year."

Cindy Ebinger, a professor of earth and environmental sciences at the University of Rochester, coordinated field activities near the Kenya-Tanzania border and analyzed earthquake patterns within the rift zone.

"The unique coupling of gas chemistry and earthquake studies made it possible to discover the escape of gas along permeable fault zones that serve as conduits to the surface," said Ebinger. "The work also allowed us to document the process of crustal growth through the formation of igneous rocks from magma in early-stage continental rift zones."

Lee says the scientists plan to measure diffuse CO2 flux and collect gas samples from other areas in the EAR to better constrain how much it releases deep carbon to try to better constrain how much deeply derived CO2 comes from natural systems.

"Because some geological settings, for example fault zones, have never been paid attention to, global CO2 flux from natural systems are obviously underestimated," he said. "Although there are still many ongoing studies to find better ways to quantify CO2 flux from active volcanoes, we expect this study to trigger more research on CO2 output from non-volcanic areas."

Additional scientists involved in the study included: Distinguished Professor Zach Sharp, UNM Department of Earth and Planetary Sciences; Simon Kattenhorn, University of Idaho; and Gladys Kianji, University of Nairobi (Kenya).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of New Mexico
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECTONICS
Scientists show why Himalayas grow
Oxford, UK (SPX) Jan 12, 2016
An international team of scientists has shed new light on the earthquake that devastated Nepal in April 2015, killing more than 8,000 people. A study published in the journal Nature Geoscience shows that a kink in the regional fault line below Nepal explains why the highest mountains in the Himalayas are seen to grow between earthquakes. This kink has created a ramp 20km below the surface, with ... read more


TECTONICS
Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

South Korea to launch lunar exploration in 2016, land by 2020

TECTONICS
Opportunity Welcomes Winter Solstice

A Starburst Spider On Mars

Rover Rounds Martian Dune to Get to the Other Side

Boulders on a Martian Landslide

TECTONICS
SAIC Awarded $485 Million Enterprise Applications Service Technologies 2 Contract by NASA

Strengthening Our Space Technology Future: Snapshots of Success

Six Orion Milestones to Track in 2016

Gadgets get smarter, friendlier at CES show

TECTONICS
China Plans More Than 20 Space Launches in 2016

China plans 20 launches in 2016

China's Belt and Road Initiative catches world's imagination: Inmarsat CEO

China launches HD earth observation satellite

TECTONICS
Long haul, night repairs for British, US spacewalkers

ISS Science Rockets Into 2016

British astronaut's first spacewalk set for Jan 15

NASA Delivers New Video Experience On ISS

TECTONICS
SpaceX will try to land its reusable rocket on an ocean dock

SpaceX will attempt ocean landing of rocket Jan 17

Arianespace year-opening mission delivered to Final Assembly Building

Maintaining Arianespace's launch services leadership in 2016

TECTONICS
Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

TECTONICS
Recycling light

Polymer puts new medical solutions within reach

All-antiferromagnetic memory could get digital data storage in a spin

It's a 3-D printer, but not as we know it









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.