Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















SPACE MEDICINE
Scientists build world's tiniest hammer to bang on brain cells
by Brooks Hays
Santa Barbara, Calif. (UPI) Feb 2, 2017


disclaimer: image is for illustration purposes only

Scientists at the University of California, Santa Barbara want to study the effects of various mechanical forces on individual brain cells. Until now, however, researchers didn't have the right tools.

To study brain impacts at the nanoscale, researchers built the world's tiniest hammer -- the ╬╝Hammer, or "microHammer." The ╬╝Hammer is a cellular-scale machine capable of applying a variety of mechanical forces to neural progenitor cells, brain-centric stem cells. Eventually, scientists hope to use the hammer to apply forces to neurons and neural tissue.

The hammer piggybacks on existing cell-sorting technology which isolates individual cells for diagnostics and immunotherapy. Once isolated, the machine can apply a range of forces. Post-impact structural and biomechanical analysis will allow scientists study the effects of focus in near real-time.

"This project will enable precision measurements of the physical, chemical and biological changes that occur when cells are subjected to mechanical loading, ranging from small perturbations to high-force, high-speed impacts," researcher Megan Valentine said in a news release. "Our technology will provide significantly higher forces and faster impact cycles than have previously been possible, and by building these tools onto microfluidic devices, we can leverage a host of other on-chip diagnostics and imaging tools, and can collect the cells after testing for longer-term studies."

The research isn't so much about studying traumatic brain impacts as it is about understanding the role mechanical forces play in cellular communication.

"Mechanical forces have been shown to impact cells a lot," said researcher Kimberly Turner.

Previous studies suggest mechanical forces can trigger a variety of cellar changes. An impact can cause cells to differentiate or begin healing.

"Our studies could transform our understanding of how cells process and respond to force-based signals," Valentine concluded. "These signals are essential in development and wound healing in healthy tissues, and are misregulated in diseases such as cancer."


Comment on this article using your Disqus, Facebook, Google or Twitter login.

.


Related Links
Space Medicine Technology and Systems






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE MEDICINE
One-year mission investigators debut preliminary results at NASA work
Houston TX (SPX) Feb 01, 2017
Preliminary research results for the NASA One-Year Mission debuted last week at an annual NASA conference. Last March, two men landed back on Earth after having spent nearly one year in space. NASA and Roscosmos, the Russian space agency, teamed up for an unprecedented One-Year Mission. One crewmember from each agency lived on the International Space Station for almost one year. NASA's Hum ... read more


SPACE MEDICINE
Full Braking at Alpha Centauri

New Era of Space Travel: Private Station May Replace ISS by Late 2020

The Outer Space Treaty has been remarkably successful - but is it fit for the modern age?

Progress MS-03 cargo spacecraft to reenter January 31

SPACE MEDICINE
ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

NASA sounding rocket launches into Alaskan night

SmallGEO's first flight reaches orbit

Russia to check space flight engines over faulty parts

SPACE MEDICINE
Meteorite reveals 2 billion years of volcanic activity on Mars

Opportunity marks 13 years of ground operations on Mars

Similar-Looking Ridges on Mars Have Diverse Origins

Commercial Crew's Role in Path to Mars

SPACE MEDICINE
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

SPACE MEDICINE
Iridium Adds Eighth Launch with SpaceX for Satellite Rideshare

Space, Ukrainian-style: Through Crisis to Revival

ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

SPACE MEDICINE
NASA's New Shape-Shifting Radiator Inspired by Origami

Space Traffic Management

Japan 'space junk' collector in trouble

Anatomy of a debris incident

SPACE MEDICINE
New planet imager delivers first science at Keck

Dedicated Planet Imager Opens Its Eyes to Other Worlds

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

SPACE MEDICINE
Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement