. 24/7 Space News .
TECH SPACE
SLAC's ultra-high-speed 'electron camera' catches molecules at a crossroads
by Staff Writers
Menlo Park CA (SPX) Jul 25, 2018

Illustration of the laser-driven response of trifluoroiodomethane molecules (balls and sticks). A laser flash elevates the molecule from a low-energy ground state to an excited state of higher energy (at left). The molecular states are shown as energy landscapes, on which the molecule can follow reaction paths (arrows). At a point where two excited states intersect (conical intersection), the reaction can take two routes: the molecule can either break apart (dissociation) or stay intact and vibrate (vibration). (Greg Stewart/SLAC National Accelerator Laboratory)

An extremely fast "electron camera" at the Department of Energy's SLAC National Accelerator Laboratory has produced the most detailed atomic movie of the decisive point where molecules hit by light can either stay intact or break apart.

The results could lead to a better understanding of how molecules respond to light in processes that are crucial for life, like photosynthesis and vision, or that are potentially harmful, such as DNA damage from ultraviolet light.

In the study, published in Science, researchers looked at a gas whose molecules have five atoms each. They watched in real time how light stretched the bond between two atoms in the molecules to a "point of no return," sending the molecules on a path that either further separated the atoms and cleaved the bond or caused the atoms to vibrate while preserving the bond.

"The starting and end points of a chemical reaction are often obvious, but it's much more challenging to take snapshots of the rapid reaction steps in between," said postdoctoral researcher Jie Yang, the study's lead author from SLAC's Accelerator Directorate and the Stanford PULSE Institute.

"The crossroads where a molecule can do one thing or another are an important factor in determining the outcome of a reaction. Now we've been able to observe directly for the first time how the atomic nuclei of a molecule rearrange at such an intersection."

Co-author Todd Martinez, a professor at SLAC and Stanford University and an investigator at PULSE, said, "The system we studied is a paradigm for the much more complex light-driven reactions in nature." For example, the absorption of ultraviolet light can cause damage to DNA, but other mechanisms turn the light's energy into molecular vibrations and minimize the harmful effect.

Ultra-High-Speed Snapshots of Atoms in Motion
The first steps in light-driven reactions are extremely fast. Molecules absorb light almost instantaneously, leading to a rapid rearrangement of their electrons and atomic nuclei. To see what happens in real time, researchers need ultra-high-speed cameras that can "freeze" motions occurring within femtoseconds, or millionths of a billionth of a second.

The camera used in the study was an instrument for ultrafast electron diffraction (UED), in which a high-energy beam of electrons probes the interior of a sample, generating snapshots of its atomic architecture at different points in time during a chemical reaction. Strung together, these snapshots turn into a movie of the speedy atomic motions.

At SLAC, the researchers flashed laser light into a gas of trifluoroiodomethane molecules and observed over the course of hundreds of femtoseconds how bonds between carbon and iodine atoms elongated to a point at which the bond either broke, splitting off iodine from the molecules, or contracted, setting off vibrations of the atoms along the bond.

"UED was absolutely crucial to seeing that point during the reaction," said physicist Xijie Wang, head of SLAC's UED program and the study's principal investigator. "Other methods either don't detect nuclear motions directly or haven't reached the resolution necessary to make this kind of observation in gases."

Mapping Energy Landscapes of Chemical Reactions
The observation is in agreement with calculations that provide a deeper understanding of what happens during the reaction.

The laser light "energizes" the molecules, elevating them from a low-energy ground state to a higher-energy excited state (see image below). Molecular states like these can be described by energy landscapes, with mountains of more energy and valleys of less energy. Like a golf ball rolling on a curved putting green, the molecules can follow reaction paths on these surfaces.

When the landscapes of different molecular states intersect, the reaction can proceed in several directions. Chemists call this point a conical intersection.

In fact, molecules at conical intersections exist in several states at once - an oddity rooted in the fact that molecules are tiny quantum systems, said co-author Xiaolei Zhu, a postdoctoral researcher at PULSE and Stanford. "We can predict this behavior in computer simulations," he said. "Now we've also directly seen that the molecules behave exactly that way in the experiment."

The team is now planning the next steps. "We're continuing to develop the UED method so that we can look at similar processes in liquids," Wang said. "This will bring us even closer to understanding light-driven chemical reactions in biological environments."


Related Links
SLAC National Accelerator Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Controlling the manufacture of stable aerogels
Kyoto, Japan (SPX) Jul 23, 2018
Kyoto University researchers have developed a new approach to control the fabrication of soft, porous materials, overcoming a primary challenge in materials science. Soft, porous, gel-like materials that have a stable structure despite their tiny cavities have a wide variety of potential applications. Building insulation, energy storage devices, aerospace technologies, and even environmental clean-ups can all benefit from incorporating light and flexible materials. Molecular assemblies calle ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Boeing's quest to take astronauts to space station hits snag

Seeking 72-hour Space Environment Forecasts with Updates on the Hour

First space tourist flights could come in 2019

A Two-Dimensional Space Program

TECH SPACE
Hot firing proves solid rocket motor for Ariane 6 and Vega-C

Roscosmos' Research Center's Staff Suspected of Leaking Data Abroad

2018 end to be busy for ISRO with several rocket launches

Arianespace's Ariane 5 launch for the Galileo constellation and Europe

TECH SPACE
'Storm Chasers' on Mars Searching for Dusty Secrets

Martian Atmosphere Behaves as One

NASA's MAVEN Spacecraft Finds That "Stolen" Electrons Enable Unusual Aurora on Mars

Name Europe's robot to roam and search for life on Mars

TECH SPACE
PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

TECH SPACE
Space, not Brexit, is final frontier for Scottish outpost

Billion Pound export campaign to fuel UK space industry

mu Space confirms payload on Blue Origin's upcoming New Shepard flight

New satellite constellations will soon fill the sky

TECH SPACE
Researchers unravel more mysteries of metallic hydrogen

What's your idea to 3D print on the Moon

Why won't Parker Solar Probe melt

New application of blue light sees through fire

TECH SPACE
WSU researcher sees possibility of moon life

X-ray Data May Be First Evidence of a Star Devouring a Planet

Glowing bacteria on deep-sea fish shed light on evolution, 'third type' of symbiosis

Origami-inspired device helps marine biologists study aliens

TECH SPACE
The True Colors of Pluto and Charon

Radiation Maps of Jupiter's Moon Europa: Key to Future Missions

Dozen new Jupiter moons declared

NASA Juno data indicate another possible volcano on Jupiter moon Io









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.