. 24/7 Space News .
TECH SPACE
New application of blue light sees through fire
by Staff Writers
Washington DC (SPX) Jul 24, 2018

Graphic illustrating the NIST narrow-spectrum illumination method for imaging through fire. Blue LED light is directed through a gas fire, reflects off the target object behind the flames and is captured by a camera after passing through an optical filter. This reduces the observed intensity of the flame by 10,000-fold and yields highly detailed images.

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated that ordinary blue light can be used to significantly improve the ability to see objects engulfed by large, non-smoky natural gas fires - like those used in laboratory fire studies and fire-resistance standards testing.

As described in a new paper in the journal Fire Technology, the NIST blue-light imaging method can be a useful tool for obtaining visual data from large test fires where high temperatures could disable or destroy conventional electrical and mechanical sensors.

The method provides detailed information to researchers using optical analysis such as digital image correlation (DIC), a technique that compares successive images of an object as it deforms under the influence of applied forces such as strain or heat. By precisely measuring the movement of individual pixels from one image to the next, scientists gain valuable insight about how the material responds over time, including behaviors such as strain, displacement, deformation and even the microscopic beginnings of failure.

However, using DIC to study how fire affects structural materials presents a special challenge: How does one get images with the level of clarity needed for research when bright, rapidly moving flames are between the sample and the camera?

"Fire makes imaging in the visible spectrum difficult in three ways, with the signal being totally blocked by soot and smoke, obscured by the intensity of the light emitted by the flames, and distorted by the thermal gradients in the hot air that bend, or refract, light," said Matt Hoehler, a research structural engineer at NIST's National Fire Research Laboratory (NFRL) and one of the authors of the new paper. "Because we often use low-soot, non-smoky gas fires in our tests, we only had to overcome the problems of brightness and distortion."

To do that, Hoehler and colleague Chris Smith, a research engineer formerly with NIST and now at Berkshire Hathaway Specialty Insurance, borrowed a trick from the glass and steel industry where manufacturers monitor the physical characteristics of materials during production while they are still hot and glowing.

"Glass and steel manufacturers often use blue-light lasers to contend with the red light given off by glowing hot materials that can, in essence, blind their sensors," Hoehler said. "We figured if it works with heated materials, it could work with flaming ones as well."

Hoehler and Smith used commercially available and inexpensive blue light-emitting diode (LED) lights with a narrow-spectrum wavelength around 450 nanometers for their experiment.

Initially, the researchers placed a target object behind the gas-fueled test fire and illuminated it in three ways: by white light alone, by blue light directed through the flames and by blue light with an optical filter placed in front of the camera. The third option proved best, reducing the observed intensity of the flame by 10,000-fold and yielding highly detailed images.

However, just seeing the target wasn't enough to make the blue-light method work for DIC analysis, Hoehler said. The researchers also had to reduce the image distortion caused by the refraction of light by the flame - a problem akin to the "broken pencil" illusion seen when a pencil is placed in a glass of water.

"Luckily, the behaviors we want DIC to reveal, such as strain and deformation in a heated steel beam, are slow processes relative to the flame-induced distortion, so we just need to acquire a lot of images, collect large amounts of data and mathematically average the measurements to improve their accuracy," Hoehler explained.

To validate the effectiveness of their imagining method, Hoehler and Smith, along with Canadian collaborators John Gales and Seth Gatien, applied it to two large-scale tests. The first examined how fire bends steel beams and the other looked at what happens when partial combustion occurs, progressively charring a wooden panel. For both, the imaging was greatly improved.

"In fact, in the case of material charring, we feel that blue-light imaging may one day help improve standard test methods," Hoehler said. "Using blue light and optical filtering, we can actually see charring that is normally hidden behind the flames in a standard test. The clearer view combined with digital imaging improves the accuracy of measurements of the char location in time and space."

Hoehler also has been involved in the development of a second method for imaging objects through fire with colleagues at NIST's Boulder, Colorado, laboratories. In an upcoming NIST paper in the journal Optica, the researchers demonstrate a laser detection and ranging (LADAR) system for measuring volume change and movement of 3D objects melting in flames, even though moderate amounts of soot and smoke.

Research Report: "Imaging Through Fire Using Narrow-Spectrum Illumination"


Related Links
National Institute of Standards and Technology
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Airbus-built Aeolus wind sensor satellite ready for shipment
Toulouse, France (SPX) Jun 07, 2018
Aeolus, the European Space Agency's wind sensing satellite, is now ready for its upcoming launch. It will be shipped across the Atlantic on the Airbus vessel "Ciudad de Cadiz" to Kourou, French Guiana, where a Vega launcher will send it to orbit on 21 August. The instrument is so sensitive that it could be damaged by a sudden loss of pressure. For this reason, air transportation has to be avoided and for the first time Airbus will transport one of its satellites on-board its own vessel. The ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
A Two-Dimensional Space Program

Seeking 72-hour Space Environment Forecasts with Updates on the Hour

First space tourist flights could come in 2019

Scientists Can Now Recycle Water, Air, Fuel, Making Deep Space Travel Possible

TECH SPACE
Hot firing proves solid rocket motor for Ariane 6 and Vega-C

2018 end to be busy for ISRO with several rocket launches

Sustained hypersonic flight-enabling technology patent granted to Advanced Rockets Corporation

Arianespace's Ariane 5 launch for the Galileo constellation and Europe

TECH SPACE
NASA May Have Destroyed Evidence for Organics on Mars 40 Years Ago

Seasonal 'spiders' emerge on Mars' surface

Scientists Discover "Ghost Dunes" On Mars

Airbus wins two ESA studies for Mars Sample Return mission

TECH SPACE
PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

TECH SPACE
Space, not Brexit, is final frontier for Scottish outpost

Billion Pound export campaign to fuel UK space industry

mu Space confirms payload on Blue Origin's upcoming New Shepard flight

New satellite constellations will soon fill the sky

TECH SPACE
Future electronic components to be printed like newspapers

Materials processing tricks enable engineers to create new laser material

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

Controlling the manufacture of stable aerogels

TECH SPACE
Origami-inspired device helps marine biologists study aliens

Glowing bacteria on deep-sea fish shed light on evolution, 'third type' of symbiosis

Finding a Planet with a 10-Year Orbit in a Few Months

TESS Spacecraft Continues Testing Prior to First Observations

TECH SPACE
NASA Juno data indicate another possible volcano on Jupiter moon Io

First Global Maps of Pluto and Charon from New Horizons Published

Europa's Ocean Ascending

Jupiter's moons create uniquely patterned aurora on the gas giant planet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.