Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















ENERGY TECH
Rolling out an e-sticker revolution
by Staff Writers
Thuwal, Saudi Arabia (SPX) Jan 04, 2017


Pressure-sensitive 'e-stickers' contain all the functionality of traditional silicon circuits but can be fabricated into complex, flexible shapes such as butterflies. Image courtesy 2016 KAUST.

The healthcare industry forecasts that our wellbeing in the future will be monitored by wearable wirelessly networked sensors. Manufacturing such devices could become much easier with decal electronics. A KAUST-developed process prints these high-performance silicon-based computers on to soft, sticker-like surfaces that can be attached anywhere1.

Fitting electronics on to the asymmetric contours of human bodies demands a re-think of traditional computer fabrications. One approach is to print circuit patterns on to materials such as polymers or cellulose using liquid ink made from conductive molecules. This technique enables high-speed roll-to-roll assembly of devices and packaging at low costs.

Flexible printed circuits, however, require conventional silicon components to handle applications such as digitizing analog signals. Such rigid modules can create uncomfortable hot spots on the body and increase device weight.

For the past four years, Muhammad Hussain and his team from the KAUST Computer, Electrical and Mathematical Science and Engineering Division have investigated ways to improve the flexibility of silicon materials while retaining their performance.

"We are trying to integrate all device components - sensors, data management electronics, battery, antenna - into a completely compliant system," explained Hussain. "However, packaging these discrete modules on to soft substrates is extremely difficult."

Searching for potential electronic skin applications, the researchers developed a sensor containing narrow strips of aluminum foil that changes conductivity at different bending states.

The devices, which could monitor a patient's breathing patterns or activity levels, feature high-mobility zinc oxide nanotransistors on silicon wafers thinned down lithographically to microscale dimensions for maximum flexibility. Using three-dimensional (3-D) printing techniques, the team encapsulated the silicon chips and foils into a polymer film backed by an adhesive layer.

Hussain and his colleagues found a way to make the e-sticker sensors work in multiple applications. They used inkjet printing to write conductive wiring patterns on to different surfaces, such as paper or clothing. Custom-printed decals were then attached or re-adhered to each location.

"You can place a pressure-sensing decal on a tire to monitor it while driving and then peel it off and place it on your mattress to learn your sleeping patterns," said Galo Torres Sevilla, first author of the findings and a KAUST Ph.D. graduate.

The robust performance and high-throughput manufacturing potential of decal electronics could launch a number of innovative sensor deployments, noted Hussain.

"I believe that electronics have to be democratized - simple to learn and easy to implement. Electronic decals are a right step in that direction," Hussain said.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.

.


Related Links
King Abdullah University of Science and Technology
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Lifetime of organic light-emitting diodes affected by impurities in vacuum
Fukuoka, Japan (UPI) Dec 28, 2016
The brightness of organic light-emitting diodes, or OLEDs, declines over time. Why exactly the lights degrade hasn't been entirely clear to scientists - until now. Researchers at Kyushu University in Japan determined impurities in the vacuum chamber during the OLED fabrication process explain degradation. The impurities are so minuscule they're often overlooked. OLEDs are made u ... read more


ENERGY TECH
Tech show looks beyond 'smart,' to new 'realities'

'Passengers' and the real-life science of deep space travel

NASA Readies for Major Orion Milestones in 2017

India achieves advances multiple space systems in 2016

ENERGY TECH
Preparing to Plug Into NASA SLS Fuel Tank

New round of wind tunnel tests underway for bigger SLS version

United Launch Alliance launches EchoStar XIX satellite

Ultra-Cold Storage - Liquid Hydrogen may be Fuel of the Future

ENERGY TECH
Small Troughs Growing on Mars May Become 'Spiders'

All eyes on Trump over Mars

Opportunity performs several drives to ancient gully

Full go-ahead for building ExoMars 2020

ENERGY TECH
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

ENERGY TECH
Airbus DS and Energia eye new medium-class satellite platform

OneWeb announces key funding form SoftBank Group and other investors

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

ENERGY TECH
Scientists create tiny laser using silver nanoparticles

Divide and conquer pattern searching

Scientists hope to make concrete tougher by studying its defects

The hidden inferno inside your laser pointer

ENERGY TECH
The blob can learn and teach

Searching a sea of 'noise' to find exoplanets - using only data as a guide

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Exciting new creatures discovered on ocean floor

ENERGY TECH
Exploring Pluto and the Wild Back Yonder

Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement