. 24/7 Space News .
ROBO SPACE
Robot adds new twist to NIST antenna measurements and calibrations
by Staff Writers
Boulder CO (SPX) Dec 09, 2015


NIST's latest antenna range relies on a robot to measure virtually any property of any antenna for applications such as advanced communications. A gold horn antenna is positioned on the horizontal platform for testing. Image courtesy Suplee/NIST. For a larger version of this image please go here.

The National Institute of Standards and Technology (NIST) has been pioneering antenna measurement methods for decades, but a new robot may be the ultimate innovation, extending measurements to higher frequencies while characterizing antennas faster and more easily than previous NIST facilities.

The robot - actually a robotic arm of the type used in manufacturing - will be used to rapidly and accurately measure the properties of antennas used in advanced communications, remote sensing for weather prediction and climate monitoring, imaging systems and radar.

NIST researchers came up with the idea for the robotic arm in 2011 as a means of meeting the demands posed by new, high-frequency antennas. The robot has now been validated and is being used to serve NIST customers. Officially introduced in a new paper,* the robot's formal name is the Configurable Robotic Millimeter-Wave Antenna (CROMMA) facility.

"We designed this system to address a need in the antenna community for high-precision and configurable scanning at short, millimeter wavelengths," lead researcher Joshua Gordon says. "Past systems haven't been as complete as they need to be. The robot allows us to explore many ways of doing measurements. There's a lot of configurability and an extremely high level of repeatability."

Robotics is the latest advance in the widely used near-field scanning technique, pioneered by NIST in the 1970s.** The method uses complex mathematical models to determine antenna properties and calculate performance at long distances - where it counts - using data collected indoors close to the antenna, where it's easier to get accurate readings. Near-field scanning allows researchers to assess an antenna's gain (signal power transmitted or received), polarization (orientation of the electromagnetic field) and pattern (angular distribution of transmitted or received energy).

The six-axis robot can twist into unusual positions to measure the properties of a test antenna up to 2 meters (6.6 feet) in diameter positioned on a hexapod stage. A laser tracker monitors and records positions used for fine correction of robot postures to ensure the necessary precision. It's like a high-tech form of the game Twister.

Antennas can be dynamically positioned with a precision of tens of micrometers in all six degrees of freedom - up or down, left or right, forward or back, tilting, turning and rolling. The arm can hold up to 35 kilograms (70 pounds) and can measure antenna properties in almost any user-definable pattern, including the three popular paths: spherical, planar and cylindrical. No longer is a separate antenna measurement setup needed for each path type.

At first, the robot will measure frequencies from 100 gigahertz (GHz) to 300 GHz with the goal of eventually reaching 500 GHz and higher. High frequencies - with very short wavelengths of radiation - are used in many current and emerging applications due to improved spatial resolution, smaller antenna components and higher data rates. There is a particular need for accurate antenna pattern measurements above 100 GHz, a range that holds promise for future generations of advanced communications antennas and improved weather and climate prediction.

NIST calibrates antennas for a variety of industrial and military customers, offers a bi-annual course to transfer near-field technology to industry and other users, and also helps other organizations establish their own antenna measurement facilities. NIST's robotic antenna measurement technology is being transferred to industry.

* J.A. Gordon, D.R. Novotny, M.H. Francis, R.C. Wittmann, M.L. Butler, A.E. Curtin and J.R. Guerrieri. 2015. Millimeter-Wave Near-Field Measurements Using Coordinated Robotics. IEEE Transactions on Antennas and Propagation. Vol. 63, Issue 12. Posted online Nov. 25. DOI: 10.1109/TAP.2015.2496110

** The research leading to the near-field technique started in the 1950s, and the theory was published in 1960. After NIST demonstrated successful measurements of many types of antennas, including those on satellite communications dishes, radar systems and planetary probes in deep space, the technique was widely accepted. Today, there are about 1,000 ranges making near-field measurements throughout the world. The method saves space, time and money.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institute of Standards and Technology (NIST)
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
Japan shows off disaster-response robots at android fair
Tokyo (AFP) Dec 2, 2015
Japan on Wednesday displayed a pair of two-legged humanoid robots that can operate in harsh conditions as the country prone to earthquakes and volcanic eruptions prepares for the next catastrophe. Simulating work in a tunnel after a quake, two slender robots with tiny heads attached with sensors walked through fake debris to extinguish a fire during a demonstration at the International Robot ... read more


ROBO SPACE
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

ROBO SPACE
Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

ExoMars prepares to leave Europe for launch site

ROBO SPACE
Orion's power system to be put to the test

The Ins and Outs of NASA's First Launch of SLS and Orion

Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

Brits Aim for the Stars with Big Bucks on Offer to Conquer Final Frontier

ROBO SPACE
China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

ROBO SPACE
Getting Into the Flow on the ISS

Orbital to fly first space cargo mission since 2014 explosion

Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

ROBO SPACE
DXL-2: Studying X-ray emissions in space

Arianespace selected to launch Azerspace-2/Intelsat 38 satellites

"Cyg"-nificant Science Launching to Space Station

Flight teams prepare for LISA Pathfinder liftoff

ROBO SPACE
What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Neptune-size exoplanet around a red dwarf star

ROBO SPACE
Conductor turned insulator amid disorder

World's tiniest temperature sensor can track movement from inside cement

Researchers discover mother of pearl production process

New 'self-healing' gel makes electronics more flexible









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.