. 24/7 Space News .
CHIP TECH
Revolutionizing electronics using Kirigami
by Staff Writers
Toyohashi, Japan (SPX) Dec 18, 2017


This is an ultrastretchable 'Kirigami' bioprobe device. The stretched device (upper picture) and the device placed over the biological tissue (lower image).

A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed an ultrastretchable bioprobe using Kirigami designs.

The Kirigami-based bioprobe enables one to follow the shape of spherical and large deformable biological samples such as heart and brain tissues. In addition, its low strain-force characteristic reduces the force induced on organs, thereby enabling minimally invasive biological signal recording. The results of their research will be published in Advanced Healthcare Materials on December 8, 2017.

High stretchability and deformability are promising properties to increase the applications of flexible film electronics including sensors, actuators, and energy harvesters. In particular, they have great potential for applications related to three-dimensional soft biological samples such as organs and tissues that exhibit large and rapid changes in their surface area and volume (e.g., a beating heart).

However, conventional elastomer-based stretchable devices require a large strain-force to stretch it, that arises from an intrinsic material property. This makes it impossible to follow the deformation of soft biological tissues, thereby preventing natural deformation and growth.

For device applications pertaining to soft biological samples, it is extremely important to reduce the strain-force characteristic of the stretchable devices to realize low invasiveness and safe measurements.

A research team in the Department of Electrical and Electronic Information Engineering and the EIIRIS at Toyohashi University of Technology has developed an ultrastretchable bioprobe using Kirigami designs.

"To realize the ultrastretchable bioprobe with low strain-force characteristic, we used a Kirigami design as the device pattern. The remarkable feature of Kirigami is that rigid and unstretchable materials can be rendered more stretchable compared to other elastomer-based stretchable materials.

"The stretching mechanism is based on an out-of-plane bending of the thin film rather than stretching of the material; therefore, the strain-stress characteristic is extremely low compared to that of elastomer-based stretchable devices," explains the first author of the article, Ph.D. candidate Yusuke Morikawa.

The leader of the research team, Associate Professor Takeshi Kawano, said, "The idea germinated in my mind one morning when I woke up and saw my son playing with Origami and Kirigami. I saw him realize high stretchability of the paper while creating the Kirigami designs. This made me wonder whether it is possible to develop stretchable electronics using the concept of Kirigami.

Surprisingly, our preliminary studies on Kirigami-based parylene films by microelectromechanical systems technology exhibited high stretchability of 1,100%.

In addition, we are extremely excited that the fabricated Kirigami-based bioprobes possess the distinct advantages of high stretchability and deformability, and are capable of recording biological signals from the cortical surface and beating heart of a mouse."

The research team believes that the Kirigami-based bioprobes can also be used to probe tissues and organs that exhibit time-dependent changes in their surface and volume due to growth or disease.

This is expected to lead to the eventual realization of a completely new measurement method that can be instrumental in understanding the mechanisms governing growth and diseases like Alzheimer's.

Research paper

CHIP TECH
Researchers quantify factors for reducing power semiconductor resistance by two-thirds
Tokyo, Japan (SPX) Dec 13, 2017
A research group in Japan announced that it has quantified for the first time the impacts of three electron-scattering mechanisms for determining the resistance of silicon carbide (SiC) power semiconductor devices in power semiconductor modules. The university-industry team consisting of researchers from the University of Tokyo and Mitsubishi Electric Corporation has found that resistance ... read more

Related Links
Toyohashi University of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA Establishes Advisory Group for National Space Council

PARC to Partner with Commercial Space Leader to Accelerate Space R and D

'Dragon back' as cargo reaches space station

SpaceX resupply truck Dragon on route to ISS for space research delivery

CHIP TECH
In first, SpaceX launches recycled rocket and spaceship

Russian space agency blames satellite loss on programming error

ArianeGroup signs contract with ESA for future Prometheus engine

Rocket Lab makes another attempt at rocket launch in New Zealand

CHIP TECH
Planting oxygen ensures a breath of fresh air

Designing future human space exploration on Hawaii's lava fields

Opportunity Comes to a Fork in the Road

Space program should focus on Mars, says editor of New Space

CHIP TECH
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

CHIP TECH
Green Light for Continued Operations of ESA Science Missions

New business incubators will help space industry grow

mu Space becomes first Thai startup to acquire satellite license

Regulation and compliance for nontraditional space missions

CHIP TECH
Brittle starfish shows how to make tough ceramics

Russia says 'satellite' could have caused radioactive pollution

Army taps Northrop Grumman for new radar risk reduction work

Better mastery of heat flow leads to next-generation thermal cloaks

CHIP TECH
Life's building blocks observed in spacelike environment

NASA uses AI to uncover eighth planet circling distant star

No alien 'signals' from cigar-shaped asteroid: researchers

Two Super-Earths around red dwarf K2-18

CHIP TECH
Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot

New Horizons Corrects Its Course in the Kuiper Belt

Wrapping up 2017 one year out from MU69









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.