. 24/7 Space News .
CHIP TECH
Researchers quantify factors for reducing power semiconductor resistance by two-thirds
by Staff Writers
Tokyo, Japan (SPX) Dec 13, 2017


Electron scattering under the silicon carbide (SiC) interface is limited by three factors: roughness of the SiC interface, charges under the SiC interface and atomic vibration.

A research group in Japan announced that it has quantified for the first time the impacts of three electron-scattering mechanisms for determining the resistance of silicon carbide (SiC) power semiconductor devices in power semiconductor modules.

The university-industry team consisting of researchers from the University of Tokyo and Mitsubishi Electric Corporation has found that resistance under the SiC interface can be reduced by two-thirds by suppressing electron scattering by the charges, a discovery that is expected to help reduce energy consumption in electric power equipment by lowering the resistance of SiC power semiconductors.

Electric power equipment used in home electronics, industrial machinery, trains and other apparatuses requires a combination of maximized efficiency and minimized size. Mitsubishi Electric, a leading Japanese electronics and electrical equipment manufacturer, is accelerating use of SiC devices for power semiconductor modules, which are key components in electric power equipment. SiC power devices offer lower resistance than conventional silicon power devices, so to further lower their resistance it is important to understand correctly the characteristics of the resistance under the SiC interface.

"Until now, however, it had been difficult to measure separately resistance-limiting factors that determine electron scattering," says Satoshi Yamakawa, senior manager of the SiC Device Development Center at Mitsubishi Electric's Advanced Technology R and D Center.

Electron scattering focusing on atomic vibration was measured using technology from the University of Tokyo. The impact that charges and atomic vibration have on electron scattering under the SiC interface was revealed to be dominant in Mitsubishi Electric's analyses of fabricated devices.

Although it has been recognized that electron scattering under the SiC interface is limited by three factors, namely, the roughness of the SiC interface, the charges under the SiC interface and the atomic vibration, the contribution of each factor had been unclear. A planar-type SiC metal-oxide-semiconductor field-effect transistor (SiC-MOSFET), in which electrons conduct away from the SiC interface to around several nanometers, was fabricated to confirm the impact of the charges.

"We were able to confirm at an unprecedented level that the roughness of the SiC interface has little effect while charges under the SiC interface and atomic vibration are dominant factors," says Koji Kita, an associate professor at the University of Tokyo's Graduate School of Engineering and one of scientists leading the research.

Using an earlier planar-type SiC-MOSFET device for comparison, resistance was reduced by two-thirds owing to suppression of electron scattering, which was achieved by making the electrons conduct away from the charges under the SiC interface. The previous planar-type device has the same interface structure as that of the SiC-MOSFET fabricated by the electronics maker.

For the test, Mitsubishi Electric handled the design, fabrication and analysis of the resistance-limiting factors and the University of Tokyo handled the measurement of electron-scattering factors.

"Going forward, we will continue refining the design and specifications of our SiC MOSFET to further lower the resistance of SiC power devices," says Mitsubishi Electric's Yamakawa.

This research achievement was announced at the 63rd International Electron Devices Meeting (IEDM) in San Francisco, California, on December 4, 2017.

CHIP TECH
Squeezing light into a tiny channel brings optical computing a step closer
London UK (SPX) Dec 08, 2017
By forcing light to go through a smaller gap than ever before, researchers have paved the way for computers based on light instead of electronics. Light is desirable for use in computing because it can carry a higher density of information and is much faster and more efficient than conventional electronics. However, light does not easily interact with itself, so while it can be used to mov ... read more

Related Links
University of Tokyo
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Tech titans ramp up tools to win over children

Aerospace and Mitchell Institute release new report on policy needs for space operations

UAE launches programme to send astronauts into space

China pushed global patent filings to record high in 2016: UN

CHIP TECH
SpaceX's Elon Musk to launch his own car into deep space

ISRO eyes one rocket launch a month in 2018

Russia to build launch pad for super heavy-lift carrier by 2028

Flat-Earther's self-launch plan hits a snag

CHIP TECH
EU exempts fuel for ExoMars mission from Russian sanctions

Mars Rover Team's Tilted Winter Strategy Works

Brown: Clay on Mars May Have Formed in Primordial Steam Bath

Winter wanderings put Opportunity at 28 Miles on the odometer

CHIP TECH
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

CHIP TECH
Regulation and compliance for nontraditional space missions

Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

Going green to the Red Planet

CHIP TECH
Penn researchers establish universal signature fundamental to how glassy materials fail

In first, 3-D printed objects connect to WiFi without electronics

Better mastery of heat flow leads to next-generation thermal cloaks

3-D-printed minifactories

CHIP TECH
Two Super-Earths around red dwarf K2-18

A New Spin to Solving Mystery of Stellar Companions

The CHEOPS scientific instrument is complete

Discovery about rare nitrogen molecules offers clues to makeup of life-supporting planets

CHIP TECH
Wrapping up 2017 one year out from MU69

Jupiter Blues

Research bolsters possibility of plate tectonics on Europa

Pluto's hydrocarbon haze keeps dwarf planet colder than expected









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.