. 24/7 Space News .
TECH SPACE
Researchers take terahertz data links around the bend
by Staff Writers
Providence RI (SPX) Feb 12, 2018

illustration only

An off-the-wall new study by Brown University researchers shows that terahertz frequency data links can bounce around a room without dropping too much data. The results are good news for the feasibility of future terahertz wireless data networks, which have the potential to carry many times more data than current networks.

Today's cellular networks and Wi-Fi systems rely on microwave radiation to carry data, but the demand for more and more bandwidth is quickly becoming more than microwaves can handle. That has researchers thinking about transmitting data on higher-frequency terahertz waves, which have as much as 100 times the data-carrying capacity of microwaves. But terahertz communication technology is in its infancy. There's much basic research to be done and plenty of challenges to overcome.

For example, it's been assumed that terahertz links would require a direct line of sight between transmitter and receiver. Unlike microwaves, terahertz waves are entirely blocked by most solid objects. And the assumption has been that it's not possible to bounce a terahertz beam around--say, off a wall or two--to find a clear path around an object.

"I think it's fair to say that most people in the terahertz field would tell you that there would be too much power loss on those bounces, and so non-line-of-sight links are not going to be feasible in terahertz," said Daniel Mittleman, a professor in Brown University's School of Engineering and senior author of the new research published in APL Photonics.

"But our work indicates that the loss is actually quite tolerable in some cases - quite a bit less than many people would have thought."

For the study, Mittleman and his colleagues bounced terahertz waves at four different frequencies off of a variety of objects--mirrors, metal doors, cinderblock walls and others - and measured the bit-error-rate of the data on the wave after the bounces. They showed that acceptable bit-error-rates were achievable with modest increases in signal power.

"The concern had been that in order to make those bounces and not lose your data, you'd need more power than was feasible to generate," Mittleman said.

"We show that you don't need as much power as you might think because the loss on the bounce is not as much as you'd think."

In one experiment, the researchers bounced a beam off two walls, enabling a successful link when transmitter and receiver were around a corner from each other, with no direct line-of-sight whatsoever. That's a promising finding to support the idea of terahertz local-area networks.

"You can imagine a wireless network," Mittleman explained, "where someone's computer is connected to a terahertz router and there's direct line-of-sight between the two, but then someone walks in between and blocks the beam. If you can't find an alternative path, that link will be shut down. What we show is that you might still be able to maintain the link by searching for a new path that could involve bouncing off a wall somewhere. There are technologies today that can do that kind of path-finding for lower frequencies and there's no reason they can't be developed for terahertz."

The researchers also performed several outdoor experiments on terahertz wireless links. An experimental license issued by the FCC makes Brown the only place in the country where outdoor research can be done legally at these frequencies. The work is important because scientists are just beginning to understand the details of how terahertz data links behave in the elements, Mittleman says.

Their study focused on what's known as specular reflection. When a signal is transmitted over long distances, the waves fan out forming an ever-widening cone. As a result of that fanning out, a portion the waves will bounce off of the ground before reaching the receiver. That reflected radiation can interfere with the main signal unless a decoder compensates for it. It's a well-understood phenomenon in microwave transmission. Mittleman and his colleagues wanted to characterize it in the terahertz range.

They showed that this kind of interference indeed occurs in terahertz waves, but occurs to a lesser degree over grass compared to concrete. That's likely because grass has lots of water, which tends to absorb terahertz waves. So over grass, the reflected beam is absorbed to a greater degree than concrete, leaving less of it to interfere with the main beam. That means that terahertz links over grass can be longer than those over concrete because there's less interference to deal with, Mittleman says.

But there's also an upside to that kind of interference with the ground.

"The specular reflection represents another possible path for your signal," Mittleman said.

"You can imagine that if your line-of-site path is blocked, you could think about bouncing it off the ground to get there."

Mittleman says that these kinds of basic studies on the nature of terahertz data transmission are critical for understanding how to design the network architecture for future terahertz data systems.

Research paper


Related Links
Brown University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Quantum cocktail provides insights on memory control
Zurich, Switzerland (SPX) Feb 05, 2018
The speed of writing and reading out magnetic information from storage devices is limited by the time that it takes to manipulate the data carrier. To speed up these processes, researchers have recently started to explore the use of ultrashort laser pulses that can switch magnetic domains in solid-state materials. This route proved to be promising, but the underlying physical mechanisms remain poorly understood. This is largely due the complexity of the magnetic materials involved, in which a larg ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
All-in-one service for the Space Station

NASA's Continued Focus on Returning U.S. Human Spaceflight Launches

NASA Acting Administrator's Statement on FY 2019 Budget Proposal

US wants to privatize International Space Station: report

TECH SPACE
Russia launches cargo spacecraft after aborted liftoff

Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

Elon Musk, visionary Tesla and SpaceX founder

TECH SPACE
Mars Opportunity Rover Energy Levels Improve

A Piece of Mars is Going Home

Danish architect envisions life on Mars

Leaky Atmosphere Linked To Lightweight Planet

TECH SPACE
Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

TECH SPACE
Airbus and human spaceflight: from Spacelab to Orion

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

TECH SPACE
Raytheon to upgrade radar systems in Hornet aircraft

Lockheed's 'Dragon Shield' for Finland achieves operational capability

Scientists can now 3D print nanoscale metal structures

Helping authorities respond more quickly to airborne radiological threats

TECH SPACE
UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

Viruses are falling from the sky

Are you rocky or are you gassy

What the TRAPPIST-1 Planets Could Look Like

TECH SPACE
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.