Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















CYBER WARS
Researchers discover shortcut to satellite-based quantum encryption network
by Staff Writers
Washington DC (SPX) Jun 16, 2017


From the ground, researchers measured laser signals that originated from a satellite and traveled through Earth's gravitational potential and the turbulent atmosphere. The successful characterization of quantum features under such conditions is a precondition for the implementation of a global quantum communication network using satellites that would link metropolitan area quantum networks on the ground.

In a new study, researchers demonstrate ground-based measurements of quantum states sent by a laser aboard a satellite 38,000 kilometers above Earth. This is the first time that quantum states have been measured so carefully from so far away.

"We were quite surprised by how well the quantum states survived traveling through the atmospheric turbulence to a ground station," said Christoph Marquardt from the Max Planck Institute for the Science of Light, Germany.

"The paper demonstrates that technology on satellites, already space-proof against severe environmental tests, can be used to achieve quantum-limited measurements, thus making a satellite quantum communication network possible. This greatly cuts down on development time, meaning it could be possible to have such a system as soon as five years from now."

A satellite-based quantum-based encryption network would provide an extremely secure way to encrypt data sent over long distances. Developing such a system in just five years is an extremely fast timeline since most satellites require around 10 years of development. Normally, every component - from computers to screws - must be tested and approved to work in the harsh environmental conditions of space and must survive the gravitational changes experienced during the launch.

Marquardt and his colleagues from the division of Gerd Leuchs at the Max Planck Institute in Erlangen report their new research in Optica, The Optical Society's journal for high impact research.

Using light to keep data safe
Today, text messages, banking transactions and health information are all encrypted with techniques based on mathematical algorithms. This approach works because it is extremely difficult to figure out the exact algorithm used to encrypt a given piece of data. However, experts believe that computers powerful enough to crack these encryption codes are likely to be available in the next 10 to 20 years.

The looming security threat has placed more attention on implementing stronger encryption techniques such as quantum key distribution. Rather than relying on math, quantum key distribution uses properties of light particles known as quantum states to encode and send the key needed to decrypt encoded data.

If someone tries to measure the light particles to steal the key, it changes the particles' behavior in a way that alerts the intended communicating parties that the key has been compromised and should not be used. The fact that this system detects eavesdropping means that secure communication is guaranteed.

Although methods for quantum encryption have been in development for more than a decade, they don't work over long distances because residual light losses in optical fibers used for telecommunications networks on the ground degrade the sensitive quantum signals.

Quantum signals cannot be also regenerated without altering their properties by suing optical amplifiers as it is done for classical optical data. For this reason, there has been a recent push to develop a satellite-based quantum communication network to link ground-based quantum encryption networks located in different metropolitan areas, countries and continents.

Although the new findings showed that quantum communication satellite networks do not need to be designed from scratch, Marquardt notes that it will still take 5 to 10 years to convert ground based systems to quantum-based encryption to communicate quantum states with the satellites.

Measuring quantum states
For the experiments, Marquardt's team worked closely with satellite telecommunications company Tesat-Spacecom GmbH and the German Space Administration. The German Space Administration previously contracted with Tesat-Spacecom on behalf of the German Ministry of Economics and Energy to develop an optical communications technology for satellites.

This technology is now being used commercially in space by laser communication terminals onboard Copernicus - the European Union's Earth Observation Programme - and by SpaceDataHighway, the European data relay satellite system.

It turned out that this satellite optical communications technology works much like the quantum key distribution method developed at the Max Planck Institute. Thus, the researchers decided to see if it was possible to measure quantum states encoded in a laser beam sent from one of the satellites already in space.

In 2015 and the beginning of 2016, the team made these measurements from a ground-based station at the Teide Observatory in Tenerife, Spain. They created quantum states in a range where the satellite normally does not operate and were able to make quantum-limited measurements from the ground.

"From our measurements, we could deduce that the light traveling down to Earth is very well suited to be operated as a quantum key distribution network," Marquardt said. "We were surprised because the system was not built for this. The engineers had done an excellent job at optimizing the entire system."

The researchers are now working with Tesat-Spacecom and others in the space industry to design an upgraded system based on the hardware already used in space. This will require upgrading the laser communication design, incorporating a quantum-based random number generator to create the random keys and integrating post processing of the keys.

"There is serious interest from the space industry and other organizations to implement our scientific findings," said Marquardt. "We, as fundamental scientists, are now working with engineers to create the best system and ensure no detail is overlooked."

Research Report: K. Gunthner, I. Khan, D. Elser, B. Stiller, O. Bayraktar, C.R. Muller, K. Saucke, D. Trondle, F. Heine, S. Seel, P. Greulich, H. Zech, B. Gutlich, S. Philipp-May, C. Marquardt, G. Leuchs, "Quantum-limited measurements of optical signals from a geostationary satellite," Optica, Volume 4, Issue 6, 611-616V(2017). DOI: 10.1364/OPTICA.4.000611

CYBER WARS
Thales opens CyberLab facility in Belgium for training against attacks
Washington (UPI) Jun 8, 2017
Thales has launched a new cyber-security center in Belgium that will allow the replicating of network and information systems to prepare for cyber attacks. The company's Cyberlab, located south of Brussels, will also educate students and enhance the skills of cyber-security specialists. "As the recent worldwide cyber-attack WannaCry, which affected in particular the operational f ... read more

Related Links
Max Planck Institute for the Science of Light
Cyberwar - Internet Security News - Systems and Policy Issues

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CYBER WARS
Russia launches space freighter to ISS

Pence hails new NASA astronauts as 'best of us'

Bread Me Up, Scotty: Crumb-Free Pastries Coming to the ISS

NASA Prepares for Future Space Exploration with International Undersea Crew

CYBER WARS
Launch Vehicle Rocket Engines

India's Kerosene-Based Semi-Cryogenic Engine to Be Flight Test Ready by 2021

Russia's Next Carrier-Based Rocket Launch Planned for 2018 - Khrunichev Center

Proton returns to flight with US satellite after 12 month hiatus

CYBER WARS
Walkabout Above 'Perseverance Valley'

Window to a watery past on Mars

NASA Finds Evidence of Diverse Environments in Curiosity Samples

Hot rocks, not warm atmosphere, led to relatively recent water-carved valleys on Mars

CYBER WARS
What China's space ambitions have to do with politics

China to open space station to scientists worldwide

China achieves key breakthrough in multiple launch vehicles

China's space station to help maintain co-orbital telescope

CYBER WARS
Trudeau under pressure to reject China bid for satellite firm

Jumpstart goes into alliance with major aerospace and defence group ADS

Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

CYBER WARS
The first nanometrically-sized superelastic alloy

Cloudy with a chance of radiation: NASA studies simulated radiation

Oyster shells inspire new method to make superstrong, flexible polymers

New technique enables 3-D printing with paste of silicone particles in water

CYBER WARS
The Art of Exoplanets

OU astrophysicist identifies composition of Earth-size planets in TRAPPIST-1 system

ALMA Finds Ingredient of Life Around Infant Sun-like Stars

Astronomers Explain Formation of Seven Exoplanets Around TRAPPIST-1

CYBER WARS
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement