Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Researchers detect possible signal from dark matter
by Staff Writers
Lausanne, Switzerland (SPX) Dec 15, 2014


illustration only

Could there finally be tangible evidence for the existence of dark matter in the Universe? After sifting through reams of X-ray data, scientists in EPFL's Laboratory of Particle Physics and Cosmology (LPPC) and Leiden University believe they could have identified the signal of a particle of dark matter.

This substance, which up to now has been purely hypothetical, is run by none of the standard models of physics other than through the gravitational force. Their research will be published next week in Physical Review Letters.

When physicists study the dynamics of galaxies and the movement of stars, they are confronted with a mystery. If they only take visible matter into account, their equations simply don't add up: the elements that can be observed are not sufficient to explain the rotation of objects and the existing gravitational forces.

There is something missing. From this they deduced that there must be an invisible kind of matter that does not interact with light, but does, as a whole, interact by means of the gravitational force. Called "dark matter", this substance appears to make up at least 80% of the Universe.

Andromeda and Perseus revisited
Two groups have recently announced that they have detected the much sought after signal. One of them, led by EPFL scientists Oleg Ruchayskiy and Alexey Boyarsky, also a professor at Leiden University in the Netherlands, found it by analyzing X-rays emitted by two celestial objects - the Perseus galaxy cluster and the Andromeda galaxy.

After having collected thousands of signals from the ESA's XMM-Newton telescope and eliminated all those coming from known particles and atoms, they detected an anomaly that, even considering the possibility of instrument or measurement error, caught their attention.

The signal appears in the X-ray spectrum as a weak, atypical photon emission that could not be attributed to any known form of matter.

Above all, "the signal's distribution within the galaxy corresponds exactly to what we were expecting with dark matter, that is, concentrated and intense in the center of objects and weaker and diffuse on the edges," explains Ruchayskiy.

"With the goal of verifying our findings, we then looked at data from our own galaxy, the Milky Way, and made the same observations," says Boyarsky.

A new era
The signal comes from a very rare event in the Universe: a photon emitted due to the destruction of a hypothetical particle, possibly a "sterile neutrino". If the discovery is confirmed, it will open up new avenues of research in particle physics. Apart from that, "It could usher in a new era in astronomy," says Ruchayskiy.

"Confirmation of this discovery may lead to construction of new telescopes specially designed for studying the signals from dark matter particles", adds Boyarsky. "We will know where to look in order to trace dark structures in space and will be able to reconstruct how the Universe has formed."

These results are the outcome of a study conducted by EPFL's Laboratory of Particle Physics and Cosmology (LPPC), in collaboration with the Institute of Physics at Leiden University in the Netherlands.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ecole Polytechnique Federale de Lausanne
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Researchers detect possible signal from dark matter
Lausanne, Switzerland (SPX) Dec 14, 2014
Could there finally be tangible evidence for the existence of dark matter in the Universe? After sifting through reams of X-ray data, scientists in EPFL's Laboratory of Particle Physics and Cosmology (LPPC) and Leiden University believe they could have identified the signal of a particle of dark matter. This substance, which up to now has been purely hypothetical, is run by none of the sta ... read more


STELLAR CHEMISTRY
UK Plans to Drill Into Moon, Explore Feasibility of Manned Base

Carnegie Mellon Unveils Lunar Rover "Andy"

Why we should mine the moon

Young Volcanoes on the Moon

STELLAR CHEMISTRY
Mars is a Four-Letter Word

Flash-Memory Reformat Planned

Mars mountain may have arisen from lake sediments: NASA

Curiosity finds clues to how water helped shape Mars

STELLAR CHEMISTRY
NASA parodies 'All about that Bass' to promote space exploration

NASA's New Orion Spacecraft Completes First Spaceflight Test

FinalFlight to Scatter Ashes in the Stratosphere over Australia

NASA Exploration Programs Face Cost, Technical, Scheduling Issues

STELLAR CHEMISTRY
Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

China's Long March puts satellite in orbit on 200th launch

Service module of China's returned lunar orbiter reaches L2 point

STELLAR CHEMISTRY
Boeing Covers Groundwork in Second Milestone For Commercial Crew

ATV views Space Station as never before

Orbital says it will complete ISS deliveries by end of 2016

OPALS: Light Beams Let Data Rates Soar

STELLAR CHEMISTRY
NASA, SpaceX reschedule next week's ISS resupply launch

Final payload integration begins for O3b Networks' four satellites

ULA signs Orbital Sciences to launch Cygnus cargo mission to ISS

XCOR Presents New Platforms For Suborbital Science at AGU

STELLAR CHEMISTRY
Astronomers spot Pluto-size objects swarming about young sun

Observing Solar System Worlds as if They Were Distant Exoplanets

Finding infant earths and potential life just got easier

Queen's scientist leads study of 'Super-Earth'

STELLAR CHEMISTRY
Airbus Defence and Space signs contract for Microwave Sounder instruments

China developing space-based 3D printing machine

Bioplastic -- greener than ever

BAE Systems to produce prototype counter-radar system




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.