. 24/7 Space News .
INTERNET SPACE
Researchers achieve meter-scale optical coherence tomography for first time
by Staff Writers
Washington DC (SPX) Dec 21, 2016


A new 3-D OCT technique allows imaging of large objects such as this life-size mannequin and chessboard. Image courtesy James G. Fujimoto, Massachusetts Institute of Technology. For a larger version of this image please go here.

An industry-academic collaboration has achieved the first optical coherence tomography (OCT) images of cubic meter volumes. With OCT's ability to provide difficult-to-obtain information on material composition, subsurface structure, coatings, surface roughness and other properties, this advance could open up many new uses for OCT in industry, manufacturing and medicine. The achievement also represents important progress toward developing a high-speed, low-cost OCT system on a single integrated circuit chip.

"Our study demonstrates world-record results in cubic meter volume imaging, with at least an order of magnitude larger depth range and volume compared to previous demonstrations of three-dimensional OCT," said James G. Fujimoto of the Massachusetts Institute of Technology (MIT), Massachusetts. "These results provide a proof-of-principle demonstration for using OCT in this new regime."

OCT, first invented by Fujimoto's group and collaborators in the 1990s, is now the standard of care in ophthalmology and is increasingly used in cardiology and gastroenterology. Although OCT provides useful 3-D images with micron-scale resolution, it has been limited to imaging depths of just millimeters to a few centimeters.

In The Optical Society's journal for high impact research, Optica, the researchers report high speed, 3-D OCT imaging with 15-micron resolution over a 1.5-meter area. They demonstrated the new OCT approach by imaging a mannequin, a bicycle and models of a human brain and skull. They also conducted measurements of objects ranging in scale from meters to microns.

Multiple scales over long ranges
In addition to the advantages of high speeds and fine resolution, OCT enables imaging, profiling and distance measurement at multiple depths simultaneously while rejecting stray light.

"Long-range OCT is a new range of operation that requires extremely high performance light sources, integrated optical receivers and signal processing," Fujimoto said. Range in OCT refers to the depth range over which measurements can be simultaneously taken. It is possible to position the center of the OCT range very close to or far away from the imaging instrument.

The new technique could be particularly useful for industrial and manufacturing settings, where it could potentially be used to monitor processes, take technical measurements and nondestructively evaluate materials. Macro-scale OCT could also enhance medical imaging, for example, by providing three-dimensional measurements in laparoscopy or mapping structures such as the upper airway.

Telecom advances bring OCT improvements
The light source that enables meter-range OCT is a tunable vertical cavity surface-emitting laser (VCSEL) developed by Thorlabs Inc. and Praevium Research. It uses a MEMS device to rapidly change, or sweep, the laser's wavelength over time to perform what is called swept-source OCT.

"Research by our group at MIT and our collaborators at Praevium Research and Thorlabs indicated that the coherence length of the VCSEL source was orders of magnitude longer than other swept laser technologies suitable for OCT, which suggested the possibility of long-range OCT imaging," said Ben Potsaid of MIT and Thorlabs Inc., coauthor of the paper.

Although the MIT researchers have experimented with the VCSEL light source for several years, light detection and data acquisition remained a challenge. These hurdles were overcome by advanced optical components designed for telecommunications applications.

In the new work, the researchers used a new silicon photonics coherent optical receiver developed by Acacia Communications that replaced several bulky OCT components with integrated optics on a tiny, low-cost, single-chip photonic integrated circuit (PIC). Importantly, the PIC receiver supports the very high electrical frequencies and wide range of optical wavelengths required for swept-source OCT while also enabling what is known as quadrature detection, which doubles the OCT imaging range for a given data acquisition speed.

"The development of OCT in the early 1990s greatly benefited from components and methods used in fiber optical communications," said Fujimoto. "And still, 25 years later, advances in the optical communications industry continue to greatly benefit OCT."

In the paper, the researchers showed that meter-range OCT can obtain a strong signal from surfaces of varying geometry and materials. Their tests also indicated the technique's performance has not reached the fundamental limits for the VCSEL laser source or PIC receiver.

OCT-on-a-chip
The researchers are working to develop and utilize even more low-cost, high-speed components with the goal of speeding up the data acquisition and processing steps. This could eventually allow real-time OCT imaging using customized integrated circuit chips.

"As PIC technology continues to advance, one can realistically expect full OCT systems on a single chip within the next five years, dramatically lowering the size and cost," said Chris Doerr of Acacia Communications, coauthor of the paper. "This would allow more people all over the world to benefit from OCT and open up new applications."

"Cubic meter volume optical coherence tomography," Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A.E. Cable, E. Swanson, J.G. Fujimoto, Optica, 4, 10, 1496 (2016). DOI: 10.1364/optica.3.001496


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Optical Society
Satellite-based Internet technologies






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
Ultra-short electron beams boost bioimaging
Hamburg, Germany (UPI) Dec 14, 2016
Thanks to a team of scientists from Germany and the United States, the use of ultra-short electron beams for bioimaging no longer requires a device the size of a car. Researchers from the German Electron Synchrotron and MIT developed a small, energy efficient laser gun for the study of chemical, physical and biological processes. Currently, ultrafast laser spectroscopy is the pre ... read more


INTERNET SPACE
Trump sits down with tech execs, including critics

Trump sits down with tech execs, including critics

NASA Tech - it's all around us

NASA Communications Network to Double Space Station Data Rates

INTERNET SPACE
Ultra-Cold Storage - Liquid Hydrogen may be Fuel of the Future

Technical glitch postpones NASA satellite launch

After glitch, NASA satellite launch set for Wednesday

China develops non-toxic propellant for orbiting satellites

INTERNET SPACE
Mars Rock-Ingredient Stew Seen as Plus for Habitability

ExoMars orbiter images Phobos

Mars One puts back planned colonisation of Red Planet

Opportunity team plot path forward to the 'Gully'

INTERNET SPACE
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

INTERNET SPACE
UAE launches national space policy

Air New Zealand signs contract for Inmarsat's GX Aviation

European ministers ready ESA for a United Space in Europe in the era of Space 4.0

Nordic entrepreneurial spirit boosted by space

INTERNET SPACE
Discovery to inspire more radiation-resistant metals

Rice, Baylor team sets new mark for 'deep learning'

Method enables machine learning from unwieldy data sets

Microseeding: A new way to overcome hemihedral twinning?

INTERNET SPACE
Scientists examine bacterium found 1,000 feet underground

Rings around young star suggest planet formation in progress

ALMA finds compelling evidence for pair of infant planets around young star

Who needs a body? Not these larvae, which are basically swimming heads

INTERNET SPACE
Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation

New Perspective on How Pluto's "Icy Heart" Came to Be

New analysis adds to support for a subsurface ocean on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.