. 24/7 Space News .
EARTH OBSERVATION
Relativistic Electrons Uncovered with NASA's Van Allen Probes
by Mara Johnson-Groh for GSFC News
Greenbelt MD (SPX) Mar 16, 2017


Ordinarily, the inner belt is composed of high-energy protons and low-energy electrons. However, after a very strong geomagnetic storm in June 2015, relativistic electrons were pushed deep into the inner belt.

Earth's radiation belts, two doughnut-shaped regions of charged particles encircling our planet, were discovered more than 50 years ago, but their behavior is still not completely understood. Now, new observations from NASA's Van Allen Probes mission show that the fastest, most energetic electrons in the inner radiation belt are not present as much of the time as previously thought.

The results are presented in a paper in the Journal of Geophysical Research and show that there typically isn't as much radiation in the inner belt as previously assumed - good news for spacecraft flying in the region.

Past space missions have not been able to distinguish electrons from high-energy protons in the inner radiation belt. But by using a special instrument, the Magnetic Electron and Ion Spectrometer - MagEIS - on the Van Allen Probes, the scientists could look at the particles separately for the first time.

What they found was surprising -there are usually none of these super-fast electrons, known as relativistic electrons, in the inner belt, contrary to what scientists expected.

"We've known for a long time that there are these really energetic protons in there, which can contaminate the measurements, but we've never had a good way to remove them from the measurements until now," said Seth Claudepierre, lead author and Van Allen Probes scientist at the Aerospace Corporation in El Segundo, California.

Of the two radiation belts, scientists have long understood the outer belt to be the rowdy one. During intense geomagnetic storms, when charged particles from the sun hurtle across the solar system, the outer radiation belt pulsates dramatically, growing and shrinking in response to the pressure of the solar particles and magnetic field.

Meanwhile, the inner belt maintains a steady position above Earth's surface. The new results, however, show the composition of the inner belt isn't as constant as scientists had assumed.

Ordinarily, the inner belt is composed of high-energy protons and low-energy electrons. However, after a very strong geomagnetic storm in June 2015, relativistic electrons were pushed deep into the inner belt.

The findings were visible because of the way MagEIS was designed. The instrument creates its own internal magnetic field, which allows it to sort particles based on their charge and energy. By separating the electrons from the protons, the scientists could understand which particles were contributing to the population of particles in the inner belt.

"When we carefully process the data and remove the contamination, we can see things that we've never been able to see before," said Claudepierre. "These results are totally changing the way we think about the radiation belt at these energies."

Given the rarity of the storms, which can inject relativistic electrons into the inner belt, the scientists now understand there to typically be lower levels of radiation there - a result that has implications for spacecraft flying in the region.

Knowing exactly how much radiation is present may enable scientists and engineers to design lighter and cheaper satellites tailored to withstand the less intense radiation levels they'll encounter.

In addition to providing a new outlook on spacecraft design, the findings open a new realm for scientists to study next.

"This opens up the possibility of doing science that previously was not possible," said Shri Kanekal, Van Allen Probes deputy mission scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, not involved with the study.

"For example, we can now investigate under what circumstances these electrons penetrate the inner region and see if more intense geomagnetic storms give electrons that are more intense or more energetic."

The Van Allen Probes is the second mission in NASA's Living with a Star Program and one of many NASA heliophysics missions studying our near-Earth environment. The spacecraft plunge through the radiation belts five to six times a day on a highly elliptical orbit, in order to understand the physical processes that add and remove electrons from the region.

Research paper

EARTH OBSERVATION
15 years of GRACE: Satellite mission flies thrice its planned time
Potsdam, Germany (SPX) Mar 15, 2017
"Revolutionary" is a word you hear often when people talk about the GRACE mission. Since the twin satellites of the NASA/German Gravity Recovery and Climate Experiment (GRACE) launched on March 17, 2002, their data have transformed scientists' view of how water moves and is stored around the planet. "GRACE enabled tracking the movement of water via its mass, a field which was not available in sp ... read more

Related Links
Van Allen Probes at NASA
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Trump's budget would cut NASA asteroid mission, earth science

Aiming Higher: High School Students Build Flight Hardware Bound for Space

Student Scientists Select Menu for Astronauts

Fly me to the Moon: Russia seeks new cosmonauts

EARTH OBSERVATION
N. Korea's Kim hails engine test as 'new birth' for rocket industry

SpaceX launches EchoStar XXIII comms satellite into orbit

US BE-4 Rocket Engines to Replace Russian RD-180 on Atlas Carrier Rockets

Kennedy's Multi-User Spaceport Streamlines Commercial Launches

EARTH OBSERVATION
ExoMars: science checkout completed and aerobraking begins

Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

Opportunity Driving South to Gully

NASA Mars Orbiter Tracks Back-to-Back Regional Storms

EARTH OBSERVATION
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

EARTH OBSERVATION
A Consolidated Intelsat and OneWeb

UK funding space entrepreneurs

Kymeta and Intelsat announce new service to revolutionize how satellite services are purchased

ISRO Makes More Space for Private Sector Participation in Satellite Making

EARTH OBSERVATION
Rare-earths become water-repellent only as they age

Why water splashes: New theory reveals secrets

Next-gen steel under the microscope

Visualizing nuclear radiation

EARTH OBSERVATION
Fossil or inorganic structure? Scientists dig into early life forms

Gigantic Jupiter-type planet reveals insights into how planets evolve

Operation of ancient biological clock uncovered

Visualizing debris disk "roller derby" to understand planetary system evolution

EARTH OBSERVATION
ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution

Juno to remain in current orbit at Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.