Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

RadioAstron Observations of the Extremely Hot Heart of Quasar 3C 273
by Staff Writers
Bonn, Germany (SPX) Apr 07, 2016

Artistic view of the 10-meter space radio telescope on board of the Russian satellite Spektr-R comprising the space-borne component of the RadioAstron mission. Image courtesy Astro Space Center of Lebedev Physical Institute.

The space mission RadioAstron employing a 10-meter radio telescope on board of the Russian satellite Spektr-R has revealed the first look at the finest structure of the radio emitting regions in the quasar 3C 273 at wavelengths of 18, 6, and 1.3 cm. These ground breaking observations have been made by an international research team with four of the largest radio telescopes on Earth, including the Effelsberg 100-meter antenna.

They provide an unprecedented sensitivity to radio emission at angular scales as small as 26 microarcseconds. This resolution was achieved by combining signals recorded at all antennas and effectively creating a telescope of almost 8 Earth's diameters in size.

Supermassive black holes, containing millions to billions times the mass of our Sun, reside at the centers of all massive galaxies. These black holes can drive powerful jets that emit prodigiously, often outshining all the stars in their host galaxies.

But there is a limit to how bright these jets can be - when electrons get hotter than about 100 billion degrees, they interact with their own emission to produce X-rays and gamma-rays and quickly cool down.

Astronomers have just reported a startling violation of this long-standing theoretical limit in the quasar 3C 273. "We measure the effective temperature of the quasar core to be hotter than 10 trillion degrees!" comments Yuri Kovalev (Astro Space Center, Lebedev Physical Institute, Moscow, Russia), the RadioAstron project scientist.

"This result is very challenging to explain with our current understanding of how relativistic jets of quasars radiate."

To obtain these results, the international team used the Earth-to-space interferometer RadioAstron. The interferometer consists of an orbiting radio telescope working together with the largest ground telescopes: the 100-meter Effelsberg Telescope, the 110-m Green Bank Telescope, the 300-m Arecibo Observatory, and the Very Large Array. Operating together, these observatories provide the highest direct resolution ever achieved in astronomy, thousands of times finer than the Hubble Space Telescope.

"The fact that RadioAstron has measured extreme brightness temperatures already in several objects, including the recently reported observations of BL Lacertae, these measurements indeed point out to new underlying physics behind the energetic sources of radiation in quasars," states Andrei Lobanov, the coordinator of RadioAstron activities at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany.

However, the incredibly high temperatures were not the only surprise the RadioAstron team has found in 3C 273. The team also discovered an effect never seen before in an extragalactic source: the image of 3C 273 has substructure caused by the effects of peering through the dilute interstellar material of the Milky Way.

"Just as the flame of a candle distorts an image viewed through the hot turbulent air above it, the turbulent plasma of our own galaxy distorts images of distant astrophysical sources, such as quasars," explains Michael Johnson of the Harvard-Smithsonian Center for Astrophysics (CfA), who led the scattering study.

He continues: "These objects are so compact that we had never been able to see this distortion before. The amazing angular resolution of RadioAstron gives us a new tool to understand the extreme physics near the central supermassive black holes of distant galaxies and the diffuse plasma pervading our own galaxy."

"Our research team has been working for a long time on extending the VLBI technique to space antennas reaching baselines much larger than our Earth," concludes Anton Zensus, director at the MPIfR and head of its Radio Astronomy/VLBI research department.

"The new discoveries on 3C 273 are a wonderful example for our successful cooperation within the RadioAstron project."


Related Links
Max-Planck-Institut fur Radioastronomie
Stellar Chemistry, The Universe And All Within It

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Magnetar could have boosted explosion of extremely bright supernova
Tokyo, Japan (SPX) Mar 28, 2016
Calculations by scientists have found highly magnetized, rapidly spinning neutron stars called magnetars could explain the energy source behind two extremely unusual stellar explosions. Stellar explosions known as supernovae usually shine a billion times brighter than the Sun. Super-luminous supernovae (SLSNe) are a relatively new and rare class of stellar explosions, 10 to 100 times brigh ... read more

The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

Help keep heat on Mars Express through data mining

Scientists find Mars surface replica in India

Ancient Mars bombardment likely enhanced life-supporting habitat

Rover takes on steepest slope ever tried on Mars

Silicon Beach: LA tech hub where the sun always shines

Spanish port becomes global 'smart city' laboratory

New DNA/RNA Tool to Diagnose, Treat Diseases

ASU to develop the next generation science education courseware for NASA

Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

NASA Progresses Toward SpaceX Resupply Mission to Space Station

Boeing takes steps to block sale of Sea Launch

Reusing Falcon 9 boosters would slash costs by 30 percent

Atlas V OA-6 Anomaly Status

ALMA's most detailed image of a protoplanetary disc

Planet formation in Earth-like orbit around a young star

NASA's Spitzer Maps Climate Patterns on a Super-Earth

'Smoothed' light will help search for Earth's twins

New state of matter detected in a two-dimensional material

Light helps develop programmable materials

Upgrade to offer power boost to world's brightest X-ray laser

Record-breaking steel could be used for body armor, shields for satellites

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.