. 24/7 Space News .
CHIP TECH
Quantum computer made of standard semiconductor materials
by Staff Writers
Munich, Germany (SPX) Dec 09, 2015


By evaporating indium gallium arsenide onto a gallium arsenide substrate TUM physicists created nanometer-scale hills, so-called quantum dots. An electron trapped in one of these quantum dots can be used to store information. Hitherto unknown memory loss mechanisms could be switched off by applying a magnetic field. Image courtesy Fabian Flassig and TUM. For a larger version of this image please go here.

Physicists at the Technical University of Munich, the Los Alamos National Laboratory and Stanford University (USA) have tracked down semiconductor nanostructure mechanisms that can result in the loss of stored information - and halted the amnesia using an external magnetic field. The new nanostructures comprise common semiconductor materials compatible with standard manufacturing processes.

Quantum bits, qubits for short, are the basic logical elements of quantum information processing (QIP) that may represent the future of computer technology. Since they process problems in a quantum-mechanical manner, such quantum computers might one day solve complex problems much more quickly than currently possible, so the hope of researchers.

In principle, there are various possibilities of implementing qubits: photons are an option equally as viable as confined ions or atoms whose states can be altered in a targeted manner using lasers. The key questions regarding their potential use as memory units are how long information can be stored in the system and which mechanisms might lead to a loss of information.

A team of physicists headed by Alexander Bechtold and Professor Jonathan Finley at the Walter Schottky Institute of the Technical University of Munich and the Cluster of Excellence Nanosystems Initiative Munich (NIM) have now presented a system comprising a single electron trapped in a semiconductor nanostructure. Here, the electron's spin serves as the information carrier.

The researchers were able to precisely demonstrate the existence of different data loss mechanisms and also showed that stored information can nonetheless be retained using an external magnetic field.

Electrons trapped in a quantum dot
The TUM physicists evaporated indium gallium arsenide onto a gallium arsenide substrate to form their nanostructure. As a result of the different lattice spacing of the two semiconductor materials strain is produced at the interface between the crystal grids. The system thus forms nanometer-scale "hills" - so-called quantum dots.

When the quantum dots are cooled down to liquid helium temperatures and optically excited, a singe electron can be trapped in each of the quantum dots. The spin states of the electrons can then be used as information stores. Laser pulses can read and alter the states optically from outside. This makes the system ideal as a building block for future quantum computers.

Spin up or spin down correspond to the standard logical information units 0 and 1. But, on top of this come additional intermediate states of quantum mechanical up and down superpositions.

Hitherto unknown memory loss mechanisms
However, there is one problem: "We found out that the strain in the semiconductor material leads to a new and until recently unknown mechanism that results in the loss of quantum information," says Alexander Bechtold. The strain creates tiny electric fields in the semiconductor that influence the nuclear spin orientation of the atomic nuclei.

"It's a kind of piezoelectric effect," says Bechthold. "It results in uncontrolled fluctuations in the nuclear spins." These can, in turn, modify the spin of the electrons, i.e. the stored information. The information is lost within a few hundred nanoseconds.

In addition, Alexander Bechthold's team was able to provide concrete evidence for further information loss mechanisms, for example that electron spins are generally influenced by the spins of the surrounding 100,000 atomic nuclei.

Preventing quantum mechanical amnesia
"However, both loss channels can be switched off when a magnetic field of around 1.5 tesla is applied," says Bechtold. "This corresponds to the magnetic field strength of a strong permanent magnet. It stabilizes the nuclear spins and the encoded information remains intact."

"Overall, the system is extremely promising," according to Jonathan Finley, head of the research group. "The semiconductor quantum dots have the advantage that they harmonize perfectly with existing computer technology since they are made of similar semiconductor material." They could even be equipped with electrical contacts, allowing them to be controlled not only optically using a laser, but also using voltage pulses.

Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot; Alexander Bechtold, Dominik Rauch, Fuxiang Li, Tobias Simmet, Per-Lennart Ardelt, Armin Regler, Kai Muller, Nikolai A. Sinitsyn and Jonathan J. Finley; Nature Physics, 11, 1005-1008 (2015) - DOI: 10.1038/nphys3470


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technical University of Munich
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
A quantum spin on molecular computers
Washington DC (SPX) Dec 07, 2015
If quantum computers existed, they would revolutionize computing as we know it. Based on fundamental properties of matter, the potential power of these theoretical workhorses would solve problems in a new way, cracking extremely complex spy codes and precisely modeling chemical systems in a snap. This week in ACS Central Science, researchers create cleverly designed molecules to get one step clo ... read more


CHIP TECH
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

CHIP TECH
Letter to Mars? Royal Mail works it out for British boy, 5

European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

ExoMars prepares to leave Europe for launch site

CHIP TECH
Orion's power system to be put to the test

The Ins and Outs of NASA's First Launch of SLS and Orion

Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

Brits Aim for the Stars with Big Bucks on Offer to Conquer Final Frontier

CHIP TECH
China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

CHIP TECH
Getting Into the Flow on the ISS

Orbital to fly first space cargo mission since 2014 explosion

Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

CHIP TECH
DXL-2: Studying X-ray emissions in space

Arianespace selected to launch Azerspace-2/Intelsat 38 satellites

"Cyg"-nificant Science Launching to Space Station

Flight teams prepare for LISA Pathfinder liftoff

CHIP TECH
What kinds of stars form rocky planets

Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Neptune-size exoplanet around a red dwarf star

CHIP TECH
Conductor turned insulator amid disorder

World's tiniest temperature sensor can track movement from inside cement

Researchers discover mother of pearl production process

New 'self-healing' gel makes electronics more flexible









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.