. 24/7 Space News .
TIME AND SPACE
Putting quantum scientists in the driver's seat
by Staff Writers
Oak Ridge TN (SPX) Mar 29, 2018

An electron beam (teal) hits a nanodiamond, exciting plasmons and vibrations in the nanodiamond that interact with the sample's nitrogen vacancy center defects. Correlated (yellow) photons are emitted from the nanodiamond, while uncorrelated (yellow) photons are emitted by a nearby diamond excited by surface plasmons (red).

Scientists at the Department of Energy's Oak Ridge National Laboratory are conducting fundamental physics research that will lead to more control over mercurial quantum systems and materials. Their studies will enable advancements in quantum computing, sensing, simulation, and materials development.

The researchers' experimental results were recently published in Physical Review B Rapid Communication and Optics Letters.

Quantum information is considered fragile because it can be lost when the system in which it is encoded interacts with its environment, a process called dissipation. Scientists with ORNL's Computing and Computational Sciences and Physical Sciences directorates and Vanderbilt University have collaborated to develop methods that will help them control - or drive - the "leaky," dissipative behavior inherent in quantum systems.

"Our goal is to develop experimental platforms that allow us to probe and control quantum coherent dynamics in materials," said Benjamin Lawrie, a research scientist in the Quantum Sensing Team in ORNL's Quantum Information Science Group. "To do that, you often have to be able to understand what's going on at the nanoscale."

Bringing perspectives from quantum information science, nanoscience and electron microscopy, the scientists exploit existing knowledge of matter and the physics of light and sound to examine the quantum nature of nanostructures - structures that measure about one-billionth of a meter.

One project focused on driving nitrogen vacancy center defects in nanodiamonds with plasmons. The naturally occurring defects are created when a nitrogen atom forms in place of the typical carbon atom, adjacent to an atomless vacancy. The defects are being investigated for use in tests of entanglement, a state that will allow substantially more information to be encoded in a quantum system than can be accomplished with classical computing.

Electrons generate an electric field. When an electron beam is applied to a material, the material's electrons are spurred to motion - a state called excitation - creating a magnetic field that can then be detected as light. Working with plasmons, electron excitations that couple easily with light, allows scientists to examine electromagnetic fields at the nanoscale.

Matthew Feldman, a Vanderbilt University graduate student conducting doctoral research at ORNL through the National Defense Science and Engineering Graduate Fellowship program and a member of the Quantum Sensing Team, used a high-energy electron beam to excite nitrogen vacancy centers in diamond nanoparticles, causing them to emit light.

He then used a cathodoluminescence microscope owned by ORNL's Materials Science and Technology Division, which measures the visible-spectrum luminescence in irradiated materials, to collect the emitted photons and characterize high-speed interactions among nitrogen vacancy centers, plasmons and vibrations within the nanodiamond.

In other research, Jordan Hachtel, a postdoctoral fellow with ORNL's Center for Nanophase Materials Sciences, used the cathodoluminescence microscope to excite plasmons in gold nanospirals. He explored how the geometry of the spirals could be harnessed to focus energy in nanoscale systems. Andy Lupini served the project as a microscopy consultant, providing expertise regarding equipment optimization and troubleshooting.

Precise control over nanoscale energy transfer is required to enable long-lived entanglement in a model explored by Eugene Dumitrescu, a research scientist in ORNL's Quantum Information Science Group. Dumitrescu's research, published in Physical Review A in late 2017, showed that the photon statistics Feldman collected could be used in calculations to show entanglement.

"This work advances our knowledge of how to control light-matter interactions, providing experimental proof of a phenomenon that had previously been described by simulations," Lawrie said.

Closed systems, in which quantum information can be kept away from its surroundings, theoretically can prevent dissipation, but real-world quantum systems are open to numerous influences that result in information leakage.

"The elephant in the room in discussions of quantum systems is decoherence," Feldman said. "If we can model an environment to influence how a quantum system works, we can enable entanglement."

Dumitrescu agreed. "We know quantum systems will be leaky. One remedy is to drive them," he said. "The driving mechanisms we're exploring cancel out the effects of dissipation."

Dumitrescu used the analogy of a musical instrument to explain the researchers' attempts to control quantum systems. "If you pluck a violin string, you get the sound, but it begins to dissipate through the environment, the air," he said. "But if you slowly draw the bow across the string, you get a more stable, longer-lasting sound. You've brought control to the system."

Feldman thinks these are fascinating times for quantum physicists because the field of quantum computing is at the same phase classical computing was in the mid-20th century. "What excites me most is how current research could change our understanding of quantum systems and materials," he said.

Research paper


Related Links
Oak Ridge National Laboratory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Scientists separate atoms with smallest sieve ever
Washington (UPI) Mar 20, 2018
Scientists have found a way to turn 2D materials into a sieve capable of separating different atoms from each other. When pushed through the tiny gap between the layers of 2D materials like hexagonal boron nitride or molybdenum disulphide, the atoms of two different hydrogen isotopes can be separated. Like graphene, hexagonal boron nitride or molybdenum disulphide form sheet-like layers the width of a single atom. The 2D layers feature unique structural patterns, each with different phys ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Airbus delivers new life support system for the ISS

60 years in orbit for 'grapefruit satellite' - the oldest human object in space

China to become top patent filer within three years: UN

Two Americans, one Russian blast off for ISS

TIME AND SPACE
Soyuz rocket rolled out for launch

SpaceX launches innovative secondary payload dispenser along side Hispasat

Air Force Chief of Staff: US 'On Track' to Replace Russian RD-180 Rocket Engine

Air Force awards launch contracts to SpaceX and ULA

TIME AND SPACE
Opportunity Mars Rover brushes a new rock target

Mars' oceans formed early, possibly aided by massive volcanic eruptions

360 Video: Tour a Mars Robot Test Lab

Next NASA Mars Rover Reaches Key Manufacturing Milestone

TIME AND SPACE
China to launch Long March-5B rocket next year

China plans to develop a multipurpose, reusable space plane

China moving ahead with plans for next-generation X-ray observatory

China to launch Long March-5B rocket in 2019

TIME AND SPACE
Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

New laws unlock exciting space era for UK

Iridium Certus Distribution Expands; Enables Globally 'Connected Vehicles', Assets and Teams

TIME AND SPACE
Researchers use 3-D printing to create metallic glass alloys

Pressing a button is more challenging than appears

New 'AR' Mobile App Features 3-D NASA Spacecraft

Diamond powers first continuous room-temperature solid-state maser

TIME AND SPACE
UK team to lead European mission to study new planets

Team discovers that wind moves microinvertebrates across desert

Yale's Expres Instrument ready to find the next Earth Analog

NASA's Kepler Spacecraft Nearing the End as Fuel Runs Low

TIME AND SPACE
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.