Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Pure iron grains are rare in the universe
by Staff Writers
Sapporo, Japan (SPX) Feb 10, 2017

The researchers simulated supernova conditions by sending a rocket into sub-orbit where it was mostly free from the effect of gravity. The S-520-28 rocket was launched from JAXA's Uchinoura Space Center on Dec. 17, 2012. In the three years to follow, the researchers conducted additional micro-gravity experiments using aircraft to gather and analyze data. Image courtesy Kimura Y., et al., Pure iron grains are rare in the universe. Science Advances, Jan. 18, 2017.

Pure iron grains in interstellar space are far rarer than previously thought, shedding new light on the evolution history of matters in the universe. Scientists are unsure what form iron takes in outer space even though it is one of its most abundant refractory elements.

Extensive analysis of meteorites and other measurements show only low levels of gaseous iron and solid iron compounds, such as iron oxides, sulfides and carbides. That leaves a substantial amount of iron missing, given how much is expected to exist in the universe. Scientists surmise that if iron is not combining with other particles, it might be forming pure metal which is invisible in outer space.

That theory now appears unlikely, according to a paper recently published in the journal Science Advances.

A research team led by Hokkaido University and the Japanese Aerospace Exploration Agency conducted a rocket-based experiment to simulate the formation of pure iron grains in space. Their measurements revealed grain formation is extremely rare, contrary to the previous theory.

In space, tiny solid grains are often formed following the epic explosion of a star, or supernova, which releases extremely hot gases full of different elements. As those gas molecules collide and start to cool, they might stick to each other and begin condensing into solid particles, a process called nucleation.

The researchers simulated supernova conditions by sending a rocket into sub-orbit, 321 kilometers above the ground, where it was mostly free from the effect of gravity, which can throw off experiments. They set up a nucleation chamber with iron gas, a heating element, lasers and an image-recording system in the rocket.

The iron was heated to extremely hot temperatures until it evaporated, much like after a supernova. As the gas cooled, the group measured how much iron condensed into tiny grains by observing interference, or lack thereof, with the laser beam.

Only a few atoms stuck together per hundred thousand collisions; the sticking probability was only 0.002% while it was formerly thought to be 100%. The result shows that the nucleation of pure iron grains is very rare, even in an iron-rich environment following a supernova.

"This implies that most iron is locked up as grains of iron compounds or as impurities accreted onto other grains in the interstellar medium," says Yuki Kimura, the lead author of the paper and associate professor at Hokkaido University's Institute of Low Temperature Science.

"As iron is a key element for clarifying the overall composition and amount of interstellar grains, our results should help understand the chemistry and evolution history of matters in the universe."

Research paper

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Hokkaido University
Stellar Chemistry, The Universe And All Within It

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Scientists Estimate Solar Nebula's Lifetime
Boston MA (SPX) Feb 08, 2017
About 4.6 billion years ago, an enormous cloud of hydrogen gas and dust collapsed under its own weight, eventually flattening into a disk called the solar nebula. Most of this interstellar material contracted at the disk's center to form the Sun, and part of the solar nebula's remaining gas and dust condensed to form the planets and the rest of our solar system. Now scientists from MIT and ... read more

A new recruit for ESA's astronaut corps

The Outer Space Treaty has been remarkably successful - but is it fit for the modern age?

Full Braking at Alpha Centauri

New Era of Space Travel: Private Station May Replace ISS by Late 2020

Commercial Launch of Proton-M Carrier Rocket Planned For Early April - Roscosmos

India to launch record 104 satellites next week

ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

Russia to call tender for 2nd Phase of Vostochny Spaceport construction in Fall

UAE Aims to Launch Its First Ever Mars Mission in 2020

Opportunity Takes Advantage of her Location to do a Mini Science Campaign

Swirling spirals at the north pole of Mars

Curiosity rover sharpens paradox of ancient Mars

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

NASA seeks partnerships with US companies to advance commercial space technologies

An exciting year in space for Intelsat

Iridium Adds Eighth Launch with SpaceX for Satellite Rideshare

Space, Ukrainian-style: Through Crisis to Revival

New beam pattern yields more precise radar, ultrasound imaging

Anatomy of a debris incident

Japan's troubled 'space junk' mission fails

New material that contracts when heated holds great industrial potential

Santa Fe Institute researchers look for life's lower limits

Dedicated Planet Imager Opens Its Eyes to Other Worlds

New planet imager delivers first science at Keck

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement