. 24/7 Space News .
TIME AND SPACE
Physicists deploy magnetic vortex to control electron spin
by Staff Writers
Cleveland OH (SPX) Jun 19, 2016


Researchers coupled a diamond nanoparticle with a magnetic vortex to control electron spin in nitrogen-vacancy defects. Image courtesy Case Western Reserve University. For a larger version of this image please go here.

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature. The technology, described in Nature Communications, offers a possible alternative strategy for building quantum computers that are far faster and more powerful than today's supercomputers.

"What makes electronic devices possible is controlling the movement of electrons from place to place using electric fields that are strong, fast and local," said physics Professor Jesse Berezovsky, leader of the research. "That's hard with magnetic fields, but they're what you need to control spin."

Other researchers have searched for materials where electric fields can mimic the effects of a magnetic field, but finding materials where this effect is strong enough and still works at room temperature has proven difficult. "Our solution," Berezovsky said, "is to use a magnetic vortex." Berezovsky worked with physics PhD students Michael S. Wolf and Robert Badea.

The researchers fabricated magnetic micro-disks that have no north and south poles like those on a bar magnet, but magnetize into a vortex. A magnetic field emanates from the vortex core. At the center point, the field is particularly strong and rises perpendicular to the disk.

The vortices are coupled with diamond nanoparticles. In the diamond lattice inside each nanoparticle, several individual spins are trapped inside of defects called nitrogen vacancies.

The scientists use a pulse from a laser to initialize the spin. By applying microwaves and a weak magnetic field, Berezovsky's team can move the vortex in nanoseconds, shifting the central point, which can cause an electron to change its spin.

In what's called a quantum coherent state, the spin can act as a quantum bit, or qubit--the basic unit of information in a quantum computer,

In current computers, bits of information exist in one of two states: zero or one. But in a superposition state, the spin can be up and down at the same time, that is, zero and one simultaneously. That capability would allow for more complex and faster computing.

"The spins are close to each other; you want spins to interact with their neighbors in quantum computing," Berezovsky said. "The power comes from entanglement."

The magnetic field gradient produced by a vortex proved sufficient to manipulate spins just nanometers apart.

In addition to computing, electrons controlled in coherent quantum states might be useful for extremely high-resolution sensors, the researchers say. For example, in an MRI, they could be used to sense magnetic fields in far more detail than with today's technology, perhaps distinguishing atoms.

Controlling the electron spins without destroying the coherent quantum states has proven difficult with other techniques, but a series of experiments by the group has shown the quantum states remain solid. In fact, "the vortex appears to enhance the microwave field we apply," Berezovsky said.

The scientists are continuing to shorten the time it takes to change the spin, which is a key to high-speed computing. They are also investigating the interactions between the vortex, microwave magnetic field and electron spin, and how they evolve together.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Case Western Reserve University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Physicists measured something new in the radioactive decay of neutrons
Washington DC (SPX) Jun 19, 2016
A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay into other particles. The work provides the first measurement of the energy spectrum of photons, or particles of light, that are released in the otherwise extensively measured process known as neutron beta decay. The details of this decay p ... read more


TIME AND SPACE
US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

TIME AND SPACE
Musk explains his 'cargo route' to Mars

Remarkably diverse flora in Utah, USA, trains scientists for future missions on Mars

NASA Mars Orbiters Reveal Seasonal Dust Storm Pattern

Study of Opportunity Wheel Scuff Continues

TIME AND SPACE
TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

Second Starliner Begins Assembly in Florida Factory

TIME AND SPACE
Experts Fear Chinese Space Station Could Crash Into Earth

Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

NASA Chief: Congress Should Revise US-China Space Cooperation Law

TIME AND SPACE
Cygnus space capsule departs International Space Station

Russian, US Astronauts to Return From ISS on June 18

Astronauts enter inflatable room at space station

First steps into BEAM will expand the frontiers of habitats for space

TIME AND SPACE
MUOS-5 satellite encapsulated for launch

Airbus Safran Launchers confirms the maturity of the Ariane 6 launcher

Russian Proton-M Rocket Puts US Intelsat DLA-2 Satellite Into Orbit

US Senate reaches compromise on Russian rocket engines

TIME AND SPACE
New planet is largest discovered that orbits 2 suns

Cloudy Days on Exoplanets May Hide Atmospheric Water

Likely new planet may be in slow death spiral

On exoplanets, atmospheric water may be hiding behind clouds

TIME AND SPACE
Fighting virtual reality sickness

Cereal science: How scientists inverted the Cheerios effect

Can computers do magic?

New maths accurately captures liquids and surfaces moving in synergy









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.