. 24/7 Space News .
SOLAR SCIENCE
Perspectives on magnetic reconnection
by Staff Writers
Plainsboro NJ (SPX) Dec 09, 2016


Physicists Masaaki Yamada and Ellen Zweibel. Image courtesy Elle Starkman/PPPL for Masaaki Yamada. Ellen Zweibel photo courtesy of the University of Wisconsin-Madison. For a larger version of this image please go here.

Scientists are closer than ever to unraveling a process called magnetic reconnection that triggers explosive phenomena throughout the universe. Solar flares, northern lights and geomagnetic storms that can disrupt cell phone service and black out power grids are all set off by magnetic field lines that converge, break apart and violently reconnect in ways that are not fully understood.

Now physicists Masaaki Yamada of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Ellen Zweibel of the University of Wisconsin-Madison have provided a major perspective on four key problems in magnetic reconnection in a paper published December 7 in the British journal Proceedings of the Royal Society A.

Their research focuses on how the field lines embedded in plasma, the hot, charged gas composed of electrons and atomic nuclei - or ions - that makes up 99 percent of the visible universe, behave as they do. The findings are relevant to both astrophysics and magnetically controlled fusion experiments, which reconnection can shut down.

The extensive, 30-page paper, which the journal invited, advances understanding of four deep and long-standing puzzles:

+ The rate problem. Why does reconnection take place much faster than theory indicates?

+ The trigger problem. What determines the amount of energy that can be stored in a magnetic field and triggers its release?

+ The energetics problem. How does reconnection convert magnetic energy into explosive kinetic energy?

+ The interplay of scales problem. How does reconnection that occurs on a microscale trigger blasts that occur on a global scale?

Yamada and Zweibel, winners of the James Clerk Maxwell Prize in Plasma Physics in 2015 and 2016, respectively, take a comprehensive approach to these issues. The prize, awarded by the American Physical Society Division of Plasma Physics, honors their contributions to the dynamics of reconnection and to plasma astrophysics. Their paper combines data gleaned from satellite sightings and the Magnetic Reconnection Experiment (MRX) at PPPL, together with theory and computer simulation, to provide a detailed view of these puzzling processes.

On the rate problem, the authors note that two paths to fast reconnection have been identified. In the first, fast reconnection takes place when magnetized electrons and demagnetized ions behave differently, causing a phenomenon called a Hall effect in the reconnection layer.

In the second, a process called plasmoid instability breaks up thin current layers into magnetic islands that produce rapid reconnection (see related article here.) "Characterizing the plasmoid instability in a large laboratory plasma is a goal for future research," the authors write.

There is also much work to do on the trigger problem, Zweibel and Yamada noted. Formation of a thin current sheet has long been held to be a prerequisite for fast reconnection, they write. However, distribution of the energy that erupts in solar flares "is a key observation which trigger theories must explain," they state, and identifying the power law behind the distribution "remains a distant but important goal." In power laws, one form of energy varies as a power of another.

With regard to the energetics problem, important progress has been made recently, the authors say. Experiments conducted on the MRX at PPPL show that reconnection converts about 50 percent of the magnetic energy, with one-third of the conversion accelerating the electrons and two-thirds accelerating the ions in the plasma.

"These results raise the question of whether there is a universal principle for partitioning of converted energy, an important problem for future research," they write.

An explanation of the scale problem, in which tiny microprocesses produce large global effects, "remains extremely challenging," the authors state. Nonetheless, much "important progress" has been made.

While the triggers for reconnection are mostly global, the sources of energy conversion can be either global or small in scale. Therefore, "the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection."

Going forward, the authors write that, "prospects for future progress depend on continued successful innovations in methodology. The combination of laboratory experiments, space plasma measurements and numerical simulations is proving to be especially successful." Such developments will lead future research to focus "on the specialized features of natural plasmas throughout the universe."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton Plasma Physics Laboratory
Solar Science News at SpaceDaily






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR SCIENCE
GREGOR first results published in special issue of Astronomy and Astrophysics
Washington DC (SPX) Dec 02, 2016
A special issue of Astronomy and Astrophysics contains a series of scientific articles, which are based on data obtained with the GREGOR solar telescope in 2014 and 2015. This period represents the initial phase of scientific use, and was carried out jointly by all partners of the GREGOR consortium. These articles demonstrate the potential of the telescope and its instruments at this early stage ... read more


SOLAR SCIENCE
Space gardener Shane Kimbrough enjoys first of multiple harvests

Space Has Potholes Too!

Iceland plays the tourism card, for better for worse

Cold plasma freshens up French fries

SOLAR SCIENCE
Russian authorities inspecting crashed spacecraft debris

Airbus Safran Launchers Becomes a 74% Shareholder in Arianespace

ULA receives $269m contract modification for launch vehicle production

Arianespace's Vega scores its eighth success in orbiting Gokturk-1 for Turkey

SOLAR SCIENCE
ExoMars orbiter images Phobos

Mars One puts back planned colonisation of Red Planet

Opportunity team plot path forward to the 'Gully'

Curiosity Rover Team Examining New Drill Hiatus

SOLAR SCIENCE
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

SOLAR SCIENCE
European ministers ready ESA for a United Space in Europe in the era of Space 4.0

Nordic entrepreneurial spirit boosted by space

LeoSat and Globalsat Group Sign Strategic Worldwide Agreement

India's Space Program Makes Steady Gains

SOLAR SCIENCE
Orbital ATK to develop critical technology for in-orbit assembly

NASA awards contract for refueling mission spacecraft

This is 'year zero' of a virtual reality revolution say filmmakers

Shape matters when light meets atom

SOLAR SCIENCE
Meta musings on the origins of life

ALMA measures size of seeds of planets

New telescope chip offers clear view of alien planets

Could There Be Life in Pluto's Ocean?

SOLAR SCIENCE
New Perspective on How Pluto's "Icy Heart" Came to Be

New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.