Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

Understanding how turbulence drains heat from fusion reactors
by Staff Writers
Princeton NJ (SPX) Feb 24, 2016

PPPL Physicists Walter Guttenfelder and Yang Ren stand in the NSTX control room. Image courtesy Elle Starkman / PPPL's Office of Communication. For a larger version of this image please go here.

The life of a subatomic particle can be hectic. The charged nuclei and electrons that zip around the vacuum vessels of doughnut-shaped fusion machines known as tokamaks are always in motion. But while that motion helps produce the fusion reactions that could power a new class of electricity generator, the turbulence it generates can also limit those reactions.

Now, physicists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) appear to have gained important new insights into what affects this turbulence, which can impact the leakage of heat from the fusion plasma within tokamaks. Understanding how fusion plasmas lose heat is crucial because the more a plasma is able to retain its heat the more efficient a fusion reactor can be. Such understanding could improve the performance of ITER, the multinational tokamak being built in France, by leading to a reduction in heat leakage.

Results of this research have been published in a series of papers, with the most recent one in Physics of Plasmas in December 2015. Initial observations were reported in Physical Review Letters in 2011 and in Physics of Plasmas in 2012. The research was supported by the DOE's Office of Science.

The findings build on the fact that the center of the plasma gets much hotter than the edge during the operation of a tokamak. Turbulence then tends to drive the ions and electrons in the hot central plasma towards the edge, just as the hotter water at the bottom of a tea kettle tends to mix with the cooler water at the top, keeping the water, or plasma, from getting as hot as it otherwise could. But when scientists create what's known as a "high density gradient," by making the density of the plasma change rapidly from high at the center to low at the edges, the plasma can get hotter before that heat starts to leak.

At PPPL, a team of researchers including physicists Yang Ren and Walter Guttenfelder has now shown that a steep density gradient can also reduce the strength of the electron turbulence. To continue the tea kettle analogy, a steep density gradient can weaken the intensity of the boiling. And weaker boiling, or turbulence, means that less heat escapes from the plasma.

The physicists did their research on PPPL's National Spherical Torus Experiment (NSTX), a spherical tokamak that is shaped like a cored apple, prior to its recent upgrade. "NSTX is one of the few tokamaks in the world that can obtain a direct measurement of electron-scale turbulence," said Juan Ruiz Ruiz, a graduate student at MIT and first author of the most recent paper.

Using PPPL computers, the team analyzed the data produced during 2010 NSTX experiments when scientists used a diagnostic called a high-k scattering device that beams microwaves into the plasma and measures how they scatter. The data confirmed that the turbulence was low when the density gradient was steep.

To analyze how the density gradient affected the strength of the electron turbulence, the team fed information about the plasma's temperature and density into a program run on computers at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory in Berkeley, California. The results showed that the steep gradient reduced the strength of the electron turbulence much more than earlier theories had predicted.

The paper's discussion of electron turbulence complements MIT research that was recently reported in the journal Nuclear Fusion. Simulations of experiments on MIT's Alcator C-Mod, a conventional tokamak that is shaped like a doughnut, found that electron-scale turbulence can contribute significantly to the much larger ion-scale turbulence that is thought to dominate heat loss in conventional tokamaks.

This contribution was demonstrated in multiscale simulations, led by MIT research scientist Nathan Howard, that contradicted a common assumption that the impact of electrons was virtually negligible in conventional tokamaks. The separate Ruiz research provided further evidence of the importance of electrons to the turbulent transport of plasma. The spherical tokamak this research was based on enables the impact of electrons to be more readily seen, since the much larger ion-scale turbulence in such tokamaks is usually suppressed.

"Understanding the stabilizing mechanisms of the turbulence is definitely an important task in order to gain a predictive capability in the design of future fusion reactors," said Ruiz. "Further investigation is required to understand heat losses in tokamaks, and the upgraded version of the NSTX, the NSTX-U, will certainly be used to investigate this issue in detail."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
New finding may explain heat loss in fusion reactors
Boston MA (SPX) Jan 22, 2016
One of the biggest obstacles to making fusion power practical - and realizing its promise of virtually limitless and relatively clean energy - has been that computer models have been unable to predict how the hot, electrically charged gas inside a fusion reactor behaves under the intense heat and pressure required to make atoms stick together. The key to making fusion work - that is, getti ... read more

NASA chooses ASU to design and operate special satellite

Chinese scientists invent leak detection system for moon exploration

Aldrin recounts successes and challenges of historic space journey

Edgar Mitchell, astronaut who walked on Moon, dead at 85

Russia plans return to Mars, Moon despite money woes

NASA to simulate growing potatoes on Mars in Peru

Somewhere between Earth and Mars Science Fiction Became Science Fact

Becoming a Martian

Visions of the future unleashed at TED

Engineer Makes Sure Commercial Crew Craft Will Make Smooth Landing

Flowering Zinnias set stage for deep-space food crop research

Practical Advice for Aspiring Space Explorers

China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Black Mold Found in Cargo Prepared for ISS, Resupply Mission Delayed

Putting the Public in the Shoes of Space Station Science

Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

JAXA Launches X-ray Astronomy Satellite

ULA Launches NROL-45 Payload for the National Reconnaissance Office

SES-9 Launch Targeting Late February

Spaceflight Awarded First GSA Schedule Contract for Satellite Launch Services

Astronomers take images of an exoplanet changing over time

First detection of super-earth atmosphere

Hubble Directly Measures Rotation of Cloudy 'Super-Jupiter'

Volcanoes Light Up Atmospheres of Small Exoplanets

Real or virtual - can we tell the difference

Nebraska researcher finds gold - and other metals

Shaping crystals with the flow

Engineering material magic

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement